
Agent-based Simulation Platform Evaluation in the
Context of Human Behavior Modeling

Michal Laclavík1, Štefan Dlugolinský1, Martin Šeleng1, Marcel Kvassay1,
Bernhard Schneider2, Holger Bracker2,

Michał Wrzeszcz3, Jacek Kitowski3, Ladislav Hluchý1

1Institute of Informatics, Slovak Academy of Sciences,

Dúbravská cesta 9, 845 07 Bratislava, Slovakia
{laclavik.ui, stefan.dlugolinsky, martin.seleng, marcel.kvassay, hluchy.ui}@savba.sk

2EADS Deutschland GmbH
Landshuter Straße 26, 85716 Unterschleißheim, Germany

{bernhard.schneider, holger.bracker}@cassidian.com
3Academic Computer Centre CYFRONET,

University of Science and Technology in Cracow, Poland
michalwrzeszcz@gmail.com, kito@agh.edu.pl

Abstract. In this paper we provide a brief survey of agent based simulation
(ABS) platforms and evaluate two of them – NetLogo and MASON – by
implementing an exemplary scenario in the context of human behavior
modeling. We define twelve evaluation points, which we discuss for both of the
evaluated systems. The purpose of our evaluation is to identify the best ABS
platform for parametric studies (data farming) of human behavior, but we
intend to use the system also for training purposes. That is why we also discuss
one of serious game platform representatives – VBS2.

Keywords: agent-based simulation, human behavior modeling.

1 Introduction

Human Behavior Modeling is an important area of computational science with
implications not only for social sciences, but also for economics, epidemiology and
other fields. Scientific literature abounds in heterogeneous and highly specialized,
theoretically founded concepts of human cognition, emotion and other behavior
aspects. The task to find a simulation framework that would allow effective
implementation of such conceptions for different aspects of real human behavior to
interoperate is particularly challenging. Our motivation for this paper derives from the
EDA project A-0938-RT-GC EUSAS (European Urban Simulation for Asymmetric
Scenarios) whose goals and requirements provide the context and a guideline for our
evaluation of the existing systems.

The EUSAS project focuses on asymmetric security threats in urban terrain. Its
goal is to develop an all-in-one tool enhancing the mission analysis capabilities as

well as virtual training of real human beings (security forces) in a highly realistic 3D
cyber environment. In virtual trainings, simulated characters (civilians) with highly
realistic patterns of behavior would interact with real people (security forces), while
in the mission analysis (Data Farming) mode both the civilians and the security forces
would be simulated. A natural choice for the simulations of this kind is an agent-
based simulation [1].

We have perused the existing surveys of agent-based simulation frameworks
(ABS) with special respect to EUSAS-project goals. In the first round of the
evaluation we reviewed a high number of various agent based platforms [1] based on
published surveys and the information on the web. In the second round – “Evaluation
by Implementation” - we evaluated in depth the two most promising ABS systems by
implementing an exemplary scenario described in section 2, which reflects the main
needs of the EUSAS-project.

Besides smooth incorporation in highly realistic virtual trainings, even more
important was the ease of use in multi-parametric studies (Data Farming) where many
instances of the same ABS run in parallel, each with different values of input
parameters. The results of each run are stored in a repository for subsequent analysis.

Several ABS that we considered were based on Logo languages (derived from
Lisp). Here, NetLogo [4] was the most relevant representative. Other platforms
included Repast1 or Mason [9], which can run high number of agents by executing
each agent in small steps. In contradistinction to step-based implementations, there
are also event-based or thread-based modeling toolkits, such as CoJack2 or Jason3.
Here, each agent is executed in a separate thread and behavior is updated based on
events. The event-based approach is used in VBS2 serious game component, which
we plan to use for virtual trainings in the EUSAS system. Step-based ABS platform,
such as NetLogo, Repast or Mason, allow simulation of a higher number of agents,
and models are easier to debug, although there is an extra effort involved in
integrating them with the thread and event-based serious game component for the
purpose of virtual training. Creation of a large number of threads (e.g. thousands)
would be inefficient in any of the thread-based toolkits.

Since we did not have the resources to evaluate all the existing platforms by
implementation, we first shortlisted the candidates based on the existing MAS surveys
and then evaluated the two most promising candidates by implementing an exemplary
human behavior scenario which represented our domain. Based on the surveys,
MASON and NetLogo were identified as the two most promising systems, each with
a slightly different strategy. Compared to MASON, NetLogo was more focused on
educational purposes, but still with a good capability for simple and fast modeling,
implementation, visualization as well as good visual analytical tools. Both MASON
and NetLogo are step-based platforms using discrete-event simulation model.

Apart from simulations for multi-parametric studies, we also intend to conduct
simulations where real humans can interact, in order to support virtual trainings.
Therefore we have also explored the possibilities for integration with a virtual reality
toolkit, such as VBS2.

1 http://repast.sourceforge.net/
2 http://www.agent-software.com.au/products/cojack/index.html
3 http://jason.sourceforge.net/Jason/Jason.html

1.1 Existing Survey Literature

The most relevant survey of ABS is [7] from 2005, which tested 5 ABS on a simple
(so called Stupid Agent) scenario [7]. The evaluated platforms were NetLogo,
MASON, Repast, Swarm and Java Swarm. MASON was evaluated as the fastest. All
the features could be implemented quite well but its extensions and support tools were
not all in a good shape then. NetLogo was found to be the simplest for agent modeling
and implementation with good analytical tools and visualization. According to our
recent research, NetLogo and MASON have been the fastest evolving ABS platforms
since then. Repast was evaluated quite high. Repast is a well known platform with
current beta version of Repast Symphony, which would be worth to evaluate by
implementation, however Repast has several implementations and it is not clear
which version it would be best to evaluate. Repast claimed to support NetLogo
models, so we tried to import our implementation of NetLogo model into Repast, but
we did not succeed since errors cropped up during the import process. When Repast
Symphony reaches a stable release, it might be a worthwhile candidate for evaluation.

In a 2002 study [5], Repast, Swarm, Ascape, Smalltalk, StarLogo and AgentSheet
were compared. Only Repast can be considered from this list nowadays. The most
recent survey of MAS platforms is [6] using similar approach to [7]. It covers many
platforms we considered based on available literature. We do not provide the list here
but they are listed in [2] and many of them are also listed on the Wikipedia page on
agent-based simulation6. As already mentioned, some of these platforms were
evaluated on a StupidModel Programming experience for execution speed as well as
ability to fully or partially implement the chosen features. StupidModel7 was broken
down into 16 small tasks. It was implemented also in EcoLab C++ based Platform [8]
and showed that EcoLab8 was capable of handling this model with similar
performance as MASON but with worse GUI capability. StupidModel, however, is
not fully relevant for our purposes. We decided to evaluate MASON and NetLogo by
implementing our exemplary scenario (section 2), a simplified generic version of the
kind of scenarios envisaged for human modeling in the EUSAS-project.

1.2 Evaluated Features

In order to evaluate the chosen simulation frameworks, we have defined 12 generic
evaluation aspects on which we focused while implementing the scenario. These
points are generic and could be relevant for other kinds of simulations as well, but we
have evaluated them specifically in the context of implementing a typical human
behavior model:

– Loading and Representing the Environment and the Scenario: Here we describe

the representation and implementation of the scenario and the physical

environment. We also discuss the possibility to load the environment model from

GIS data as well as support for 3D, 2D and layered environments.

6 http://en.wikipedia.org/wiki/Comparison_of_agent-based_modeling_software
7 http://condor.depaul.edu/slytinen/abm/StupidModel/
8 http://ecolab.sourceforge.net/

– Creating and Representing Agents: We discuss how to create, represent and

implement agents in the evaluated system, and how the agents perceive other

agents or their environment.

– Behavior Implementation: Here we focus on behavior representation and

implementation in the evaluated systems.

– Movement Implementation: In this point we discuss the support for the physical

movement of the agents in the environment, how they pass around obstacles or

how a coordinated movement of crowd is supported. This is related to Flocking9

or Steering10 behavior11 of agents.

– Visualization: Support for the simulation visualization, but also for running the

simulation with no visualization (especially for Data farming purposes).

– Parameterization: In order to run parametric studies (Data Farming), we have

evaluated ABS support for simulation parameterization.

– Model check-pointing: Support for model check pointing – stopping, storing,

loading and running simulation from the previously stored break-point.

– Analytical Tools: Support and analytical tools of ABS are discussed here.

– Logging: To analyze multi-parametric studies and the measures of effectiveness,

we need to log the progress of the simulation. We discuss here the ABS support

for logging.

– Performance: We discuss the perceived performance of ABS. In addition we

provide performance measures for NetLogo and MASON for 10, 100, 1000 and

10000 civilian agents.

– Standards: We discuss possible related standards such as HLA or FIPA.

– Development Environment of evaluated platforms is discussed as well.

2 Human Behavior Modeling: Exemplary Scenario

In order to support tool evaluation with reference to the needs of human behavior
modeling and the EUSAS-project as described in the introduction, an exemplary
scenario [3] had to be defined. Hence, the exemplary scenario had to feature relevant
aspects of human behavior in a given context, deriving from real world observations,
and thereby reflecting the basic properties of the application context set by the
EUSAS-project, but also to be kept as simple as possible in order to keep the
implementation effort low and to enable rapid prototyping. Additionally the scenario
should provide sufficient space for scenario evolution and should contain reactive and
deliberative control structures for involved agents. Since the main focus of the paper

9 http://www.red3d.com/cwr/boids/
10 http://opensteer.sourceforge.net/
11 http://www.shiffman.net/teaching/nature/steering/

lies upon technical evaluation of the simulation frameworks in order to select the one
supporting the needs of the EUSAS-project best, the following description is intended
to provide an overview about the scenario elements, not to present the underlying
formal model for the different aspects of agent behavior.

The scenario comprises a civil protester and a soldier, both represented as agents
acting in a common environment.

The environment is a 2D grid composed of quadratic cells sized 0.5m x 0.5m.
Each cell is labeled to describe its nature, respectively the actions which may take
place if an agent enters the cell. The labels are: fight area, stone picking area, safety
area, soldiers area, barrier.

Depending on the internal state of the civil protester agent, he resists in a
predefined safety area of the environment or shows aggressive actions against the
local authority represented by the soldier agent. Aggressiveness of the civilian
protester is expressed by picking up a stone, approaching the soldier agent and
throwing the stone towards him. Fearful behavior in contrast is expressed by flight
reactions into a predefined safety area. The soldier agent's behavior is based on a text
book case, hence he behaves according to a given rule set and is not triggered by any
human motives. Being threatened, the soldier agent is allowed to take
countermeasures against the threatening civilian agent.

The behavior of the civilian agent requires the following elements: stimulating
events in the environment, motives, action plans and predefined behavior patterns.
Based on the psychological considerations in [11], the civilian agent architecture
contains three motives: fear, anger and an observe-motive. The theory of cognitive
appraisal for emotions [10] serves as a theoretical basis for modeling the emergence
and temporary course of the emotional motives anger and fear. Accordingly,
stimulating events in the environment (e.g. movements or actions of the soldier agent)
being perceived and cognitively evaluated by the civilian agent influence the intensity
of his emotional motives fear and anger. The concrete computation of the
corresponding motive intensities is done with the help of differential equations. The
observe-motive can be regarded as "fall-back-motive" with constant intensity. All
available motives compete against each other; the motive with the highest intensity
dominates the other motives and determines the concrete shape of behavior that the
civil agent shows at a certain point of time.

Both the civilian and the soldier execute their actions according to individual
internal actions plans. An action is defined as a non-interruptible, time-consuming
operation performed by an agent. For each action, a set of preconditions is defined.
An action plan is a list of actions to be performed one after another. Action plans can
get interrupted. This happens if the dominant motive changes or the precondition for
the next action in the plan is not fulfilled. In this case, the whole action plan gets
rejected and the agent is forced to determine a new goal to reach and, consequently, to
construct a new action plan.

3 Evaluation through Implementation

In this chapter we describe our experience with implementing the exemplary scenario
described in section 2 in both MASON12 and NetLogo13. Scenario environment is grid
based but in both NetLogo and MASON we implemented it as continuous, so agents
interact and move continuously with a small defined discrete step. Both the evaluated
systems are step-based simulation systems based on discrete-events. Although VBS2
(the serious game training component) is not directly competing with NetLogo or
MASON, the chosen candidate would be later integrated with it for training purposes.
Therefore, at appropriate places, we also refer to our implementation experiments
with VBS2 and discuss potential integration issues. Figures below show screenshots
of the exemplary scenario in NetLogo (Figure 1, left) and MASON (Figure 1,
middle).

Fig. 1. Left: Exemplary Scenario implemented in NetLogo with variable sliders and charts;
Middle: Exemplary Scenario in MASON; right: MASON console window, where inspector of
agent variables is open.

3.1 Loading and Representing Environment
The NetLogo world is a two-dimensional grid of "patches". NetLogo supports three-
dimensional environments, but the status of this feature is still experimental. Patches
are the individual squares in the grid. Each patch is a square piece of "ground" over
which the agents (turtles) can move. The way the world of patches is connected can
change. World can be wrapped horizontally, vertically or in both directions (torus). In
our exemplary scenario, we wanted to find a way how to load a map of areas into the
NetLogo 2D world. We found it very convenient to represent the simulation scenario
map by a bitmap image, where each pixel represents a patch of the world and the
pixel color defines an area to which the patch belongs. To load the scenario map into
NetLogo, we used a built-in command import-pcolors-rgb <file>, which
reads an image file, scales it to the same dimensions as the patch grid (while
maintaining the original aspect ratio of the image), and transfers the resulting pixel
colors to the patches. After we load the map into the NetLogo world, we were able to
refer to the patches from a desired area by the patch/area color.

12 http://www.cs.gmu.edu/~eclab/projects/mason/
13 http://ccl.northwestern.edu/netlogo/

In MASON we had to create a text file with an environmental matrix, i.e. with
numbers representing the areas of the scenario environment. We had to implement the
loading of this environment into MASON’s environmental structures. Environment in
MASON can be 2D or 3D, and for both a variety of demo implementations is
available. We chose 2D environment and started with IntGrid2D, which can hold a
matrix of integers. After the implementation we found that the agents were moving
too jerkily (jumping abruptly from one field to another) so we changed the
environment into 2 layers, where the agents were moving in Continuous2D layer
while the area definitions remained in IntGrid2D. While creating the continuous
layer, we were able to define a discretization of the area which helped us to integrate
the two layers. So in MASON the users can define multiple layers of continuous or
discrete environments to represent their scenario environment. These layers
(environment variables) need to be defined in the main class representing the
simulation, which, in turn, has to be derived from the SimState class. Through the
instance of this class the agents can access the current state of the environment. We
have created a Demo class which extends SimState and consists of people
variable (Continuous2D layer) holding the agent positions and grid variable
(IntGrid2D) defining the physical environment.
GIS support. In recent releases, NetLogo was equipped with a GIS extension14 for
loading the vector GIS data (points, lines, and polygons) and raster GIS data (grids).
We have tested it successfully on OpenStreetMap15 data.

MASON did not have a GIS support for a long time. This has changed in the past
few months and currently MASON supports the GeoMason16 extension, which we
intend to test in the near future.

Both NetLogo and MASON can satisfy the modeling needs regarding the physical
environment. Now they both have a GIS support, which simplifies loading of the
existing environments to these tools and integration with VBS2 training component.

3.2 Creating and Representing Agents

A world in NetLogo is made up of agents, where each agent can perform its own
activity simultaneously with and independently of other agents. There are four types
of agents in NetLogo: turtles, patches, links and the observer. Except the turtles, all
the other agent types are static. We represented soldiers and civilians as turtle agents.
We also represented stones as turtle agents, to easily simulate their throwing.

 An agent in MASON is an instance of a Java class that implements Steppable
interface, where the method step(SimState state)needs to be implemented,
representing the agent behavior. This method represents one agent simulation step in
the environment and is called by the scheduler. We have implemented 3 agent classes
(types): Soldier, Civilian and Stone. Compared to NetLogo, in MASON we can
implement each agent in a separate file/Java class, which provides for better
organization of software code. Agent instances are created in the same way as any

14 http://ccl.northwestern.edu/netlogo/docs/gis.html
15 http://www.openstreetmap.org/
16 http://cs.gmu.edu/~eclab/projects/mason/extensions/geomason/

Java class instance, and are then scheduled by the SimState simulation. Once
scheduled, we can retrieve their reference (pointer) which we need in order to destroy
the agent, e.g. when a Civilian is arrested and should disappear, or when a stone is
thrown and no longer needed. We create the Civilians and Soldiers inside the Demo
class. A stone agent is created when the Civilian enters the stone picking area and is
destroyed when it hits the Soldier or (if it misses) after a few more simulation steps.

VBS2 agents can be created through script commands, ASI, VBS2Fusion, or
through special tools like OME (Offline Mission Editor) and RTE (Real Time Editor).

3.3 Behavior Implementation

In NetLogo, an agent consists of a function describing its behavior and a number of
attributes (agent variables), which describe the agent state. The agent behavior can be
implemented in several ways. NetLogo code examples include a state machine
implementation approach using a turtle variable and the RUN command. A state
machine consists of a collection of states with a different action associated with each
state. In our implementation of the scenario, we used a different approach. We have
used turtles to represent the soldier and civilian agents and we also defined some
specific variables for these kinds of agents. The behavior of our agents depends on the
agent variables, which hold the state and motive variables defined in scenario. In each
simulation step, we recalculate all the agent motive variables reflecting the actual
state in the environment and choose the motive with the highest value as action
leading. The action related to the action leading motive is then executed.

In MASON, the agent behavior is implemented and called via step(SimState
state) method. The parameter SimState represents the simulation instance,
holding also the defined properties of the environment and simulation.

The simplest behavior is that of the Stone agent. Stone agent is created when the
Civilian enters the stone picking area. Then it is just carried by the Civilian agent
along its path. Civilian and Soldier are another agent types implemented according to
scenario from section 2.

Agent behavior in MASON is implemented through the step() method, which is
invoked at each simulation step for the environment as well as for the agents and their
internal components (fear, anger, etc.). The agent can access the environmental state
via the SimState instance passed to the step() method. The agent can also invoke
the getObjectsWithinDistance method on Int2D or Continuos2D
environment properties to locate the appropriate objects depending on its intentions.

VBS2 agents are represented as Finite State Automata or Finite State Machines.
Agents behavior can be implemented using an FSM editor, by scripting in a text
editor, through Application Scripting Interface or, finally, by VBS2Fusion API.

Overall, we felt that both NetLogo and MASON had the needed support for the
behavior modeling. In both cases, the behavior implementation had to be step-based,
which differed from VBS2 and other virtual reality tools that were thread and event-
based. This difference may have an impact on the integration and behavior
implementation.

3.4 Movement Implementation

NetLogo offers a lot of built-in variables and commands, which make the
implementation of the agent movement easy and straightforward. One can define
location by setxy <x> <y> (e.g. its initial position in the environment), by set
heading towards <agent> to set the heading of civilian to nearest stone for
example or by forward <distance> to move agent forward in the heading
direction by specified distance. Another useful command that we used a lot is
distance <agent>.

To the best of our knowledge, the movement algorithms are not supported well in
MASON. All we could do in MASON was to set up a new location for the agent in
each step. In NetLogo, movement is supported much better because of its turtle
nature. So in MASON we had to implement the basic step-wise movement towards
the target. The implementation of Flocking or Steering behavior (movement) is also
not directly supported. However, Flocking is implemented in one of the MASON
demos called Flockers. We will try to reuse it and test it. For flocking behavior in
NetLogo, the programmer simply defines the closest distance among the agents and
NetLogo steers the agents so that this distance is guaranteed.

Agent movement in VBS2 is planned via the A-star algorithm. VBS2 is able to
plan the optimal path also using the waypoints.

Overall, NetLogo definitely has a better support for agent movement (at least
heading towards is supported) than MASON. In MASON, a few sample
implementations are available but not directly supported. In addition NetLogo offers
built-in turtle commands for hill climbing and descending into valleys according to a
variable value of patches around the turtle. There is also a support for "cone of vision"
in NetLogo, which allows a turtle to set its viewport (vision angle and distance) and
ask tor agents that fall in the cone.

3.5 Visualization

In NetLogo, vector shapes are used to visualize turtles. Vector shapes are built
from basic geometric shapes (squares, circles, and lines) rather than from a grid of
pixels. Vector shapes are fully scalable and rotatable. NetLogo caches bitmap images
of vector shapes (magnified by a factor of 1, 1.5, and 2) so as to speed up execution.

NetLogo can be invoked and controlled by another program running on the Java
Virtual Machine. It is possible to embed NetLogo models in a larger application.
There is an API for this purpose, but it is considered as experimental and is likely
going to change in the future releases of NetLogo. When running NetLogo models by
API, it is possible to turn off the GUI.

In MASON, a very useful feature is the strict separation of visualization and
simulation. In order to run the simulation with the visualization one has to create a
new class derived from the GUIState class, which then instantiates the SimState
implementation. For visualization layers one can use Portrayals, which usually match
the variables representing the environment. One can define how their values will be
mapped to colors or how to draw the agents. We have implemented only 2D
visualization, but 3D is also possible and included in MASON demos.

VBS2 is used to show highly realistic 3D environments. There is a problem with
smoothly visualizing atomic actions in special cases, e.g. when a civilian wants to
throw a stone but the leading motive changes, so it starts turning back towards the
safety area in the middle of a throwing action.

Overall, both MASON and NetLogo have equally good support for visualization,
but MASON supports 3D for a longer time. In MASON, multiple displays can be
used and models can be run fully independently of visualization. In both NetLogo
and MASON one can switch off the visualization. But only in MASON the simulation
models are truly independent from the visualization, which makes it much faster – an
important factor for multi-parametric studies (data farming).

3.6 Parameterization

NetLogo offers a tool called BehaviorSpace, which can run one model many times,
systematically varying the model's settings and recording the results of each model
run. BehaviorSpace lets the user to explore the model's "space" of possible behaviors
and determine which combinations of settings cause the behaviors of interest. User
can parameterize a particular variable by specifying a list of all its possible values, by
defining an initial value, final value and increment, or the variable can be randomly
varied within a specified range.

Since MASON is built in Java, parameterization of simulation can be easily
implemented. Direct support for parameterization of simulation is provided in the
form of a tutorial17.

Both systems support the parameterization needed for our multi-parametric studies
(data farming). With MASON it is probably easier to achieve a massive run-time job-
level parallelism. On top of that, MASON also performs well when running more
instances on a single machine with more CPU cores, and has a strong separation of
the visualization and the behavior model.

3.7 Model check pointing

When running a model with NetLogo GUI, it is possible to manually stop the
simulation and save (export) its whole world state into a file. NetLogo automatically
saves all the values of all the variables, both built-in and user-defined, including all
the observer, turtle, and patch variables, the drawing, the contents of the output area
(if it exists), the contents of any plots and the state of the random number generator.
The resulting file can be then read back into NetLogo and simulation can continue
from the saved state. This export/import functionality is provided by the built-in
commands export-world <file> and import-world <file>.

MASON too has a good support for the model check-pointing – storing simulation
at any time to a disk file. Later the model can be re-loaded and the simulation re-
started from the same point. We have tested this feature and it worked well.

17 http://www.cs.gmu.edu/~eclab/projects/mason/extensions/webtutorial1/

VBS2 game can be saved at any time and there is no problem in restarting it from
several checkpoints made during the game to test alternative branches of the scenario.

Both NetLogo and MASON support the model check-pointing, but MASON also
claims cross-platform compatibility.

3.8 Analytical Tools

Results of the NetLogo simulation can be displayed to the user in the form of a plot
or a monitor. The first is the traditional way of displaying data in two or three-
dimensional space. Monitor is another popular form consisting of a number of frames,
each of which represents a concrete attribute of a simulation and its current numerical
value. Users can export this data to a file in order to read and analyze it later with
other applications, e.g. a spreadsheet. We have tried to visualize some state and
motive variables of a civilian agent in plots (see charts on left side of Figure 1).

 NetLogo Profiler extension helps measuring how many times the procedures in the
model are called during a run, and how long each call takes. The profiler extension is
new and experimental and is not yet well tested or user friendly. NetLogo System
Dynamics Modeler is used to describe and understand how things in a model relate to
one another. Instead of modeling behavior of individual agents and use them as the
basic building block of a model, the populations of agents is described as a whole by
differential equations.

MASON simulations can run directly as Java code without visualization. When
running with visualization, simulations are controlled through the Mason Console
(Figure 1, right) that allows starting, pausing and stopping. Users can load the stored
models and run them from specific checkpoints. They can also record the simulation
as a movie or take a screenshot. It is possible to set delays and choose one of multiple
displays. Multiple displays are used when we need to have more than one view of the
simulation. Similarly as in NetLogo, the users can inspect18 all the public agent
variables (but setter and getter methods need to be implemented). Their changes can
be displayed as a Chart (JFreeChart extension) or streamed into a file.

VBS2 comes with the AAR (After Action Review) tool, which can be used for
replaying and analyzing the whole mission to find crucial moments in the scenario.

Here, NetLogo was a traditional winner, but now MASON also has a good support
for the analysis of variables evolving in time by streaming or drawing charts.

3.9 Logging

NetLogo uses the Log4j package for logging. NetLogo defines eight loggers (Globals,
Greens, Code, Widgets, Buttons, Speed sliders, Turtles, Links), which are configured
through a configuration file.

To the best of our knowledge, MASON does not support the logging functionality
directly. We have implemented it using log4j. In each agent we have implemented the
logging method, which receives the text label (usually describing actions) as input and

18 http://www.cs.gmu.edu/~eclab/projects/mason/docs/tutorial0/index.html

outputs all the information about the agent – its location, variable states (fear, anger),
motives and the text label. This provided us all the needed functionality for logging.

VBS2 has its own logging module, but there are also several script commands,
which can be used for logging whatever else might be required.

NetLogo has a direct support for logging. In MASON one can use the existing Java
libraries such as log4j to log the simulation data.

3.10 Performance

Performance of MASON was evaluated in [7, 8] and NetLogo in [7], where it
turned out that MASON was the fastest platform. We have evaluated it by running
our exemplary scenario with varying numbers of agents and extending the physical
area so as to accommodate them properly. We achieved this by copying the same base
scenario area 10, 100 or 1000 times by placing a new copy of the base area on top of
each other. We have then tested the performance by running the simulation 10 times
for 1000 steps. Since one base area accommodates 10 civilians and 5 soldiers, the
evaluated numbers of agents were (1) 10 Civilians versus 5 Soldiers; (2) 100 Civilians
versus 50 Soldiers; (3) 1,000 Civilians versus 500 Soldiers; and, finally, (4) 10,000
Civilians versus 5,000 Soldiers. In the last case we have run only 10 steps of the
simulation for MASON. This step was not successful at all for NetLogo, because even
with 1GB of Java heap space, NetLogo did not succeed in starting with 15,000 agents.
Since NetLogo was much slower, we only run 10 steps for 1,500 agents.

In this way the systems were evaluated for up to 15,000 agents. This number did
not include the stones, which were created and destroyed on demand. We have run the
evaluation on the machine with two Intel(r) Core(TM) i7 CPU 860 2.80 GHz
processors and 3GB RAM. The operating system was Windows 7 (32-bit version).

Number of Agents 15 150 1500 15000

NetLogo 1 step (ms) 0,48 27,60 18281,95

MASON 1 step (ms) 0,10 0,59 21,51 2474,30

MASON speed vs. NetLogo 4,8 x 46,8 x 849,9 x
Table 1: Performance evaluation summary

MASON and NetLogo performance is shown in Table 1. One simulation step took
about 22 milliseconds for MASON and about 18 seconds for NetLogo for the middle
option (No.3) with 1,500 agents. So MASON was almost 850 times faster. MASON
speed is quite impressive and acceptable for real-time operation with virtual reality
tools for about a thousand agents. NetLogo could be used well for a hundred of
agents. While evaluating the performance we have switched off the logging for both
MASON and NetLogo. With logging to file, the performance of MASON was 2-3
times slower. With logging both to file and to console the execution was 9-10 times
slower. During the actual simulation the logging is needed, but the execution time of
one step with 1,500 agents is still under 1/10 of second (about 66 milliseconds),
which is still acceptable. For 15,000 agents, one simulation step took about 2.5
seconds for MASON (for NetLogo it did not even start), which is not acceptable for
virtual reality trainings, but still acceptable for (off-line) Data Farming. All the

simulations were executed without GUI, but even with GUI the time of the simulation
was still acceptable for 150 agents for both NetLogo and MASON. We did not
measure and evaluate the exact time requirements of the simulations with GUI. In
general, MASON is much faster than NetLogo. Additionally, we have tested the
MASON performance on a single machine with four MASON instances running in
parallel. Intel Core i7-720QM (4 cores) and 8GB RAM machine was used. One run of
a single instance of MASON was 3.74 times faster than this parallel execution of four
instances, which is a very good result. We did not perform this test for NetLogo.

In our test of VBS2, we have used the FSM combined with scripting
implementations and the conclusion was that VBS2 could run 100 civilians and 20
soldiers with no delays at all (just in the initialization of the scenario there were some
delays). We did not test VBS2Fusion, which suppose to be 200 times faster than ASI.

3.11 Standards

In this section we discuss related standards such as HLA or FIPA and their support
in the evaluated platforms.

FIPA standards19 are relevant mainly for mobile and intelligent autonomous agents
and are not so much related to agent based simulation. FIPA covers agent
communication, management and transportation (for mobile agents). For agent based
simulation only agent communication can be relevant, but in simulations this is
limited to a few concrete communication messages so it is not so crucial whether an
ABS supports FIPA or not. Neither NetLogo nor MASON support FIPA standards.

DIS and HLAstandards22 are more relevant for ABS, especially if we want to
integrate realistic civilian simulation with soldier/police virtual training as intended in
EUSAS project. VBS2 serious game supports both HLA and DIS. Anyhow, rather
than HLA or DIS, we plan to use the plug-in functionality in VBS2 and CORBA23
technology for real-time communication between ABS and VBS2 in EUSAS project,
which would be easier to develop (e.g. no need to create a FOM - Federation Object
Model). However since MASON is Java based, HLA based integration can be
supported by using poRTIco24 or Java port of CERTI25 for example. NetLogo,
integration through HLA would be also possible but not so straightforward.

3.12 Development Environment

In multi-agent systems developers face problems with debugging the agents since
they run in separate threads. Both NetLogo and MASON26 are step based, so models
can be easily debugged as any procedural or object oriented program.

19 http://fipa.org/specifications/
22 http://www.sisostds.org/ProductsPublications/Standards/IEEEStandards.aspx
23 http://www.corba.org/
24 http://www.porticoproject.org/
25 https://savannah.nongnu.org/projects/certi/
26 In MASON, agent routine (step) is scheduled as an event, but there is only one event

scheduled at one time.

NetLogo has its own development environment, which offers a lot of usable tools
such as the source editor, interface builder or agent monitors. NetLogo environment
allows users to run models and inspect their properties. Debugging can be done
mainly by executing one step of simulation and watching how the agent variables
change and how the visualization of the simulation changes. Developer can interact
with the model by Command center on-the-fly, where it is possible to execute custom
commands.

MASON is Java based library. Any Java IDE can be used to develop in MASON.
We have used Eclipse27. There is also tutorial available on how to use MASON with
Eclipse. Standard Java debugging procedures can be used easily to develop, debug
and test MASON models.

Our experience is that simple well organized libraries such as MASON [9] are
easier for programmers familiar with Java than more complex ABS IDEs, such as
Repast Symphony [1].

4 Discussion and Conclusion

In this paper we have summarized literature surveys of ABS and evaluated two
candidates – MASON and NetLogo by implementing exemplary human behavior
scenario. Recently, there have emerged interesting new candidates, such as Repast
Symphony or Janus28 with its JaSIM29 extension, which we might evaluate along these
lines in the future.

Table 2 provides a summary of the evaluated features in MASON and NetLogo.
Both are almost equal in many features. NetLogo is better in the physical movement
support and some analytical tools. MASON is much faster, supports strong separation
of visualization and behavior models, has a better support for 3D environment and is
based on Java, which makes it far easier to integrate with other systems.

Features NetLogo MASON

Language Logo, Java for simulation control Java

Enviroment 2D, 3D experimental 2D, 3D

GIS support Yes Yes

Movement Heading angle + step just set(x,y)

Stearing/Flocking Behaviour Not directly Not directly

Visualization 2D, 2D as 3D 2D, 3D

run with no visualization possible but not strictly separated separated behaviour and visualization models

Parametrization possible possible

Model check-pointing Yes Yes, platform independent

Analytical Tools Charts, Streamning, variable bars, snapshot Charts, Streamning, snapshot, video recording

Logging support using log4j not direct support but log4j can be used

Performance good for tens of agents good for thouslands of agents
Table 2: Evaluated features summary

NetLogo has proved its reputation as an ABS platform where the simulation
models can be implemented quickly and straightforwardly. A bit problematic is the
development of complex models, which cannot be structured well – each source file is
limited to include only one external source file. The integration with the serious game

27 http://www.eclipse.org/
28 http://www.janus-project.org/
29 http://www.multiagent.fr/Jasim_Platform

component is difficult, because it would require developing a custom plug-in for
NetLogo.

Regarding MASON, we have appreciated its rapid improvements over the past
few years, with new plug-ins and tools (such as GIS support) continually being
created. Its performance is impressive – it can support thousands of agents in one
simulation. It is Java-based, which helps in its integration with the external systems
(e.g. serious game component – VBS2). Similarly, the logging functionality can be
implemented through other Java-based components, such as log4j.

Overall, we were greatly impressed by the NetLogo modeling support,
functionality and the overall system, which makes it an extremely valuable tool for
educational purposes, and for scientific model development and analysis. Had we
simply looked for a handy standalone agent-based simulation tool for a limited
number of agents, NetLogo easily could have been our choice. Regarding the specific
goals and requirements of the EUSAS project, however, we had to conclude that
MASON’s speed, flexibility and extensibility were more important and made it the
best-suited candidate for the job.

Acknowledgments. The paper was supported by EDA project A-0938-RT-GC
EUSAS (European Urban Simulation for Asymmetric Scenarios) and Slovak
Scientific Grant VEGA 2/0184/10.

References

1. Macal C., North M.: Tutorial on agent-based modelling and simulation, In Journal of
Simulation, Vol. 4, No. 3, 151–162, 2010

2. EUSAS Consortium, Technical report, D2.5 Deliverable, Evaluation of existing
simulation frameworks, 2010.

3. EUSAS Consortium, White Paper on Agent Modelling, Annex to D3.2 Deliverable:
Documentation of the modelling requirements Behaviour Patterns, 2010.

4. Bakshy, E., & Wilensky, U. Turtle Histories and Alternate Universes; Exploratory
Modeling with NetLogo and Mathematica. In M. J. North, C. M. Macal & D. L. Sallach
(Eds.), Proceedings of the Agent 2007 Conference on Complex Interaction and Social
Emergence (pp. 147-158).

5. Nigel Gilbert, Steven Bankes, Platforms and methods for agent-based modelling, doi:
10.1073/pnas.072079499, PNAS May 14, 2002 vol. 99 no. Suppl 3 7197-7198

6. Rob Allan, Survey of agent based modelling and simulation tools, 2010, Technical
Report, DL-TR-2010-007, Science and Technology Facilities Council, ISSN 1362-0207

7. S.F. Railsback, S.L. Lytinen and S.K. Jackson Agent Based Simulation Platforms:
Review and Development Recommendations Simulation 8:9 (2005) 609-23,
http://www.humboldt.edu/ecomodel/documents/ABMPlatformReview.pdf

8. Russell K. Standish. 2008. Going Stupid with EcoLab. Simulation 84, 12 (December
2008), 611-618. DOI=10.1177/0037549708097146

9. Luke, S., Cioffi-Revilla, C., Panait, L., & Sullivan, K. (2004). MASON: A new multi-
agent simulation toolkit. In Proceedings of the 2004; SwarmFest Workshop.

10. Cañamero, D. (1997). Modeling Motivations and Emotions as a Basis for Intelligent
Behaviour. Proceedings of the First International Symposium on Autonomous Agents
(Agents ’97), pp. 148-155, Marina del Rey, February 1997, The ACM Press, New York

11. Dörner, D (1999): Bauplan für eine Seele. Rowohlt Verlag, Reinbek bei Hamburg.

