Agent-based Simulation Platform Evaluation in the
Context of Human Behavior M odeling

Michal Laclavik, Stefan Dlugolinsk}; Martin Seleng Marcel Kvassay
Bernhard SchneiderHolger Bracke,
Michat Wrzeszc?, Jacek KitowskKi, Ladislav Hluchy

linstitute of Informatics, Slovak Academy of Sciesice
Dubravska cesta 9, 845 07 Bratislava, Slovakia
{laclavik.ui, stefan.dlugolinsky, martin.selengarnel.kvassay, hluchy.ui}@savba.sk
2EADS Deutschland GmbH
Landshuter StralRe 26, 85716 UnterschleiRheim, Germa
{bernhard.schneider, holger.bracker}@cassidian.com
3Academic Computer Centre CYFRONET,
University of Science and Technology in Cracow, Rdla
michalwrzeszcz@gmail.com, kito@agh.edu.pl

Abstract. In this paper we provide a brief survey of ageasda simulation

(ABS) platforms and evaluate two of them — NetLagod MASON — by

implementing an exemplary scenario in the contekthaman behavior

modeling. We define twelve evaluation points, whigh discuss for both of the
evaluated systems. The purpose of our evaluatida identify the best ABS

platform for parametric studies (data farming) afnfan behavior, but we
intend to use the system also for training purpoEkat is why we also discuss
one of serious game platform representatives — VBS2.

Keywords: agent-based simulation, human behavior modeling.

1 Introduction

Human Behavior Modeling is an important area of paotational science with
implications not only for social sciences, but alep economics, epidemiology and
other fields. Scientific literature abounds in meteneous and highly specialized,
theoretically founded concepts of human cognitiemotion and other behavior
aspects. The task to find a simulation frameworkt tivould allow effective
implementation of such conceptions for differerpeags of real human behavior to
interoperate is particularly challenging. Our matien for this paper derives from the
EDA project A-0938-RT-GC EUSAS (European Urban Satian for Asymmetric
Scenarios) whose goals and requirements providedhtext and a guideline for our
evaluation of the existing systems.

The EUSAS project focuses on asymmetric securitgatis in urban terrain. Its
goal is to develop an all-in-one tool enhancing thission analysis capabilities as

well as virtual training of real human beings (sé@guorces) in a highly realistic 3D

cyber environment. In virtual trainings, simulatelaracters (civilians) with highly

realistic patterns of behavior would interact widal people (security forces), while
in the mission analysis (Data Farming) mode boghdikilians and the security forces
would be simulated. A natural choice for the sirtioles of this kind is an agent-
based simulation [1].

We have perused the existing surveys of agent-basadlation frameworks
(ABS) with special respect to EUSAS-project godis. the first round of the
evaluation we reviewed a high number of variousapased platforms [1] based on
published surveys and the information on the welihé second round — “Evaluation
by Implementation” - we evaluated in depth the twast promising ABS systems by
implementing an exemplary scenario described iti@e®, which reflects the main
needs of the EUSAS-project.

Besides smooth incorporation in highly realistictual trainings, even more
important was the ease of use in multi-parametudies (Data Farming) where many
instances of the same ABS run in parallel, each wiifferent values of input
parameters. The results of each run are storeddapasitory for subsequent analysis.

Several ABS that we considered were based on Lagguages (derived from
Lisp). Here, NetLogo [4] was the most relevant esgntative. Other platforms
included Repastor Mason [9], which can run high number of agdmgsexecuting
each agent in small steps. In contradistinctiorstep-based implementations, there
are also event-based or thread-based modelingitgotuch as CoJdatlor Jasoh
Here, each agent is executed in a separate threhéehavior is updated based on
events. The event-based approach is used in VBSausegame component, which
we plan to use for virtual trainings in the EUSAStem. Step-based ABS platform,
such as NetLogo, Repast or Mason, allow simulatiba higher number of agents,
and models are easier to debug, although therenisxdra effort involved in
integrating them with the thread and event-basemise game component for the
purpose of virtual training. Creation of a largemher of threads (e.g. thousands)
would be inefficient in any of the thread-basedkis.

Since we did not have the resources to evaluatéhallexisting platforms by
implementation, we first shortlisted the candiddiased on the existing MAS surveys
and then evaluated the two most promising candidagemplementing an exemplary
human behavior scenario which represented our doniésed on the surveys,
MASON and NetLogo were identified as the two masingising systems, each with
a slightly different strategy. Compared to MASONgthNogo was more focused on
educational purposes, but still with a good cajitgtbibr simple and fast modeling,
implementation, visualization as well as good Visaralytical tools. Both MASON
and NetLogo are step-based platforms using disenetat simulation model.

Apart from simulations for multi-parametric studiese also intend to conduct
simulations where real humans can interact, in rotdesupport virtual trainings.
Therefore we have also explored the possibiliteesritegration with a virtual reality
toolkit, such as VBS2.

1 http://repast.sourceforge.net/
2 http:/lwww.agent-software.com.au/products/cojaukeéx.html
3 http://jason.sourceforge.net/Jason/Jason.html

1.1 Existing Survey Literature

The most relevant survey of ABS is [7] from 200%ieh tested 5 ABS on a simple
(so called Supid Agent) scenario [7]. The evaluated platforms were Net,og
MASON, Repast, Swarm and Java Swarm. MASON wasuated as the fastest. All
the features could be implemented quite well lsueitensions and support tools were
not all in a good shape then. NetLogo was fourgktthe simplest for agent modeling
and implementation with good analytical tools ansualization. According to our
recent research, NetLogo and MASON have been 8tediaevolving ABS platforms
since then. Repast was evaluated quite high. Répastvell known platform with
current beta version of Repast Symphony, which Wd# worth to evaluate by
implementation, however Repast has several implaatiens and it is not clear
which version it would be best to evaluate. Repadaimed to support NetLogo
models, so we tried to import our implementatiorNetLogo model into Repast, but
we did not succeed since errors cropped up duhiagrport process. When Repast
Symphony reaches a stable release, it might betawioile candidate for evaluation.

In a 2002 study [5], Repast, Swarm, Ascape, SnliglitarLogo and AgentSheet
were compared. Only Repast can be considered fnignlist nowadays. The most
recent survey of MAS platforms is [6] using simikgpproach to [7]. It covers many
platforms we considered based on available liteeatWe do not provide the list here
but they are listed in [2] and many of them are dilsted on the Wikipedia page on
agent-based simulati&én As already mentioned, some of these platformsewer
evaluated on a StupidModel Programming experiencexecution speed as well as
ability to fully or partially implement the choséeatures. StupidModéwas broken
down into 16 small tasks. It was implemented afsBéoLab C++ based Platform [8]
and showed that EcolL&bwas capable of handling this model with similar
performance as MASON but with worse GUI capabil®upidModel, however, is
not fully relevant for our purposes. We decide@valuate MASON and NetLogo by
implementing our exemplary scenario (section Xinaplified generic version of the
kind of scenarios envisaged for human modelingy@BEUSAS-project.

1.2 Evaluated Features

In order to evaluate the chosen simulation framé&sjove have defined 12 generic
evaluation aspects on which we focused while implating the scenario. These
points are generic and could be relevant for dkives of simulations as well, but we
have evaluated them specifically in the contextinoplementing a typical human
behavior model:

— Loading and Representing the Environment and the Scenario: Here we describe
the representation and implementation of the sé@nand the physical
environment. We also discuss the possibility talldse environment model from
GIS data as well as support for 3D, 2D and layeradronments.

6 http://en.wikipedia.org/wiki/Comparison_of_agensbd_modeling_software
7 http://condor.depaul.edu/slytinen/abm/StupidModel/
8 http://ecolab.sourceforge.net/

— Creating and Representing Agents: We discuss how to create, represent and
implement agents in the evaluated system, and hewagents perceive other
agents or their environment.

— Behavior Implementation: Here we focus on behavior representation and
implementation in the evaluated systems.

— Movement Implementation: In this point we discuss the support for the [ptals
movement of the agents in the environment, how thess around obstacles or
how a coordinated movement of crowd is supportdds & related to Flockirtg
or Steerindf behaviot! of agents.

— Visualization: Support for the simulation visualization, butafer running the
simulation with no visualization (especially for adarming purposes).

— Parameterization: In order to run parametric studies (Data Farmingd have
evaluated ABS support for simulation parameterizati

— Model check-pointing: Support for model check pointing — stopping, isigr
loading and running simulation from the previousigred break-point.

— Analytical Tools: Support and analytical tools of ABS are discudser.

— Logging: To analyze multi-parametric studies and the messaf effectiveness,
we need to log the progress of the simulation. \lgeuss here the ABS support
for logging.

— Performance: We discuss the perceived performance of ABS. dditon we
provide performance measures for NetLogo and MAS&@NLO, 100, 1000 and
10000 civilian agents.

— Sandards: We discuss possible related standards such asdflEAPA.

— Development Environment of evaluated platforms is discussed as well.

2 Human Behavior Modeling: Exemplary Scenario

In order to support tool evaluation with referencghe needs of human behavior
modeling and the EUSAS-project as described inititi@duction, an exemplary
scenario [3] had to be defined. Hence, the exemplegnario had to feature relevant
aspects of human behavior in a given context, degifrom real world observations,
and thereby reflecting the basic properties of éipplication context set by the
EUSAS-project, but also to be kept as simple assiptesin order to keep the
implementation effort low and to enable rapid ptgping. Additionally the scenario
should provide sufficient space for scenario evotuaind should contain reactive and
deliberative control structures for involved agei@mce the main focus of the paper

9 http://www.red3d.com/cwr/boids/
10 http://opensteer.sourceforge.net/
1 http://www.shiffman.net/teaching/nature/steering/

lies upon technical evaluation of the simulaticenfieworks in order to select the one
supporting the needs of the EUSAS-project bestfahawing description is intended
to provide an overview about the scenario elememts,to present the underlying
formal model for the different aspects of agentawébr.

The scenario comprises a civil protester and aiemltoth represented as agents
acting in a common environment.

The environment is a 2D grid composed of quadregits sized 0.5m x 0.5m.
Each cell is labeled to describe its nature, redpdyg the actions which may take
place if an agent enters the cell. The labels figkt area, stone picking area, safety
area, soldiers area, barrier.

Depending on the internal state of the civil prtgesagent, he resists in a
predefined safety area of the environment or shaggressive actions against the
local authority represented by the soldier agemjgrAssiveness of the civilian
protester is expressed by picking up a stone, agping the soldier agent and
throwing the stone towards him. Fearful behaviocamtrast is expressed by flight
reactions into a predefined safety area. The soddjent's behavior is based on a text
book case, hence he behaves according to a gilelsetiand is not triggered by any
human motives. Being threatened, the soldier agentallowed to take
countermeasures against the threatening civiliamtag

The behavior of the civilian agent requires thdofwing elements: stimulating
events in the environment, motives, action pland predefined behavior patterns.
Based on the psychological considerations in [14§ civilian agent architecture
contains three motives: fear, anger and an obseantére. The theory of cognitive
appraisal for emotions [10] serves as a theorekiaals for modeling the emergence
and temporary course of the emotional motives araygd fear. Accordingly,
stimulating events in the environment (e.g. movemen actions of the soldier agent)
being perceived and cognitively evaluated by tivdiah agent influence the intensity
of his emotional motives fear and anger. The cdecreomputation of the
corresponding motive intensities is done with tleéphof differential equations. The
observe-motive can be regarded as "fall-back-mobtivith constant intensity. All
available motives compete against each other; tbévenwith the highest intensity
dominates the other motives and determines theretmshape of behavior that the
civil agent shows at a certain point of time.

Both the civilian and the soldier execute theiri@a according to individual
internal actions plans. An action is defined asoa-imterruptible, time-consuming
operation performed by an agent. For each acti@gtaf preconditions is defined.
An action plan is a list of actions to be perfornueg: after another. Action plans can
get interrupted. This happens if the dominant neothanges or the precondition for
the next action in the plan is not fulfilled. Inighcase, the whole action plan gets
rejected and the agent is forced to determine agealto reach and, consequently, to
construct a new action plan.

3 Evaluation through Implementation

In this chapter we describe our experience withiémenting the exemplary scenario
described in section 2 in both MAS@Nnd NetLog®. Scenario environment is grid
based but in both NetLogo and MASON we implemeritex continuous, so agents
interact and move continuously with a small defidéztrete step. Both the evaluated
systems are step-based simulation systems basdidaete-events. Although VBS2
(the serious game training component) is not divecbmpeting with NetLogo or
MASON, the chosen candidate would be later integratith it for training purposes.
Therefore, at appropriate places, we also refeoulo implementation experiments
with VBS2 and discuss potential integration issu@gures below show screenshots
of the exemplary scenario in NetLogo (Figure 1p)leind MASON (Figure 1,
middle).

|4/ Demo GUE EUSAS S

o (6.211417072573608, 8.421295565247348)

Properties

Foar
Anger | Stream |
°
vvvvvv Empty List Detatch
> I M [me |-

Fig. 1. Left: Exemplary Scenario implemented in NetLogdhwiariable sliders and charts;
Middle: Exemplary Scenario in MASON; right: MASONesole window, where inspector of
agent variables is open.

3.1 Loading and Representing Environment

The NetLogo world is a two-dimensional grid of "gla¢s"”. NetLogo supports three-
dimensional environments, but the status of thaguies is still experimental. Patches
are the individual squares in the grid. Each pach square piece of "ground" over
which the agents (turtles) can move. The way thddwof patches is connected can
change. World can be wrapped horizontally, vertcat in both directions (torus). In
our exemplary scenario, we wanted to find a way hm¥oad a map of areas into the
NetLogo 2D world. We found it very convenient t@resent the simulation scenario
map by a bitmap image, where each pixel represematch of the world and the
pixel color defines an area to which the patch mhg$o To load the scenario map into
NetLogo, we used a built-in commandport - pcol ors-rgb <fil e>, which
reads an image file, scales it to the same dimessas the patch grid (while
maintaining the original aspect ratio of the imag®)d transfers the resulting pixel
colors to the patches. After we load the map ihtoNetLogo world, we were able to
refer to the patches from a desired area by thehfsaea color.

12 http://www.cs.gmu.edu/~eclab/projects/mason/
13 http://ccl.northwestern.edu/netlogo/

In MASON we had to create a text file with an eomimental matrix, i.e. with
numbers representing the areas of the scenarioommvent. We had to implement the
loading of this environment into MASON'’s environnt@nstructures. Environment in
MASON can be 2D or 3D, and for both a variety oimdeimplementations is
available. We chose 2D environment and started WithGr i d2D, which can hold a
matrix of integers. After the implementation we iiduthat the agents were moving
too jerkily (jumping abruptly from one field to ath@r) so we changed the
environment into 2 layers, where the agents wereimgoin Cont i nuous2D layer
while the area definitions remained innt Gri d2D. While creating the continuous
layer, we were able to define a discretizationhef area which helped us to integrate
the two layers. So in MASON the users can defindtiple layers of continuous or
discrete environments to represent their scenaneirenment. These layers
(environment variables) need to be defined in thainnmclass representing the
simulation, which, in turn, has to be derived frime Si nSt at e class. Through the
instance of this class the agents can access thentstate of the environment. We
have created @eno class which extendSi nSt at e and consists opeopl e
variable Cont i nuous2D layer) holding the agent positions amg i d variable
(I nt Gri d2D) defining the physical environment.

GI S support. In recent releases, NetLogo was equipped with & &dtensiott for
loading the vector GIS data (points, lines, and/gohs) and raster GIS data (grids).
We have tested it successfully on OpenStreetiigia.

MASON did not have a GIS support for a long timbisThas changed in the past
few months and currently MASON supports the GeoM#sextension, which we
intend to test in the near future.

Both NetLogo and MASON can satisfy the modelingdseegarding the physical
environment. Now they both have a GIS support, tvtsamplifies loading of the
existing environments to these tools and integnatidh VBS2 training component.

3.2 Creating and Representing Agents

A world in NetLogo is made up of agents, where eagént can perform its own
activity simultaneously with and independently ¢fier agents. There are four types
of agents in NetLogo: turtles, patches, links amel dbserver. Except the turtles, all
the other agent types are static. We representdiésoand civilians as turtle agents.
We also represented stones as turtle agents, itp siasulate their throwing.

An agent in MASON is an instance of a Java clhas itmplementst eppabl e
interface, where the methat ep(Si nSt at e st at e) needs to be implemented,
representing the agent behavior. This method reptesone agent simulation step in
the environment and is called by the schedulerh@ie implemented 3 agent classes
(types): Soldier, Civilian and Stone. Compared tetlldgo, in MASON we can
implement each agent in a separate file/Java cladsch provides for better
organization of software code. Agent instancescaeated in the same way as any

14 http://ccl.northwestern.edu/netlogo/docs/gis.html
15 http://www.openstreetmap.org/
16 http://cs.gmu.edu/~eclab/projects/mason/exten&ieesnason/

Java class instance, and are then scheduled bgith&t at e simulation. Once
scheduled, we can retrieve their reference (pgimtbich we need in order to destroy
the agent, e.g. when a Civilian is arrested andilshdisappear, or when a stone is
thrown and no longer needed. We create the Ciglamd Soldiers inside the Demo
class. A stone agent is created when the Civilistere thestone picking area and is
destroyed when it hits the Soldier or (if it migsaier a few more simulation steps.
VBS2 agents can be created through script commaf8s, VBS2Fusion, or
through special tools like OME (Offline Mission Eal) and RTE (Real Time Editor).

3.3 Behavior Implementation

In NetLogo, an agent consists of a function degagilits behavior and a number of
attributes (agent variables), which describe trenaigtate. The agent behavior can be
implemented in several ways. NetLogo code exampletude a state machine
implementation approach using a turtle variable #m RUN command. A state
machine consists of a collection of states withferdnt action associated with each
state. In our implementation of the scenario, wedus different approach. We have
used turtles to represent the soldier and civibgents and we also defined some
specific variables for these kinds of agents. Télealvior of our agents depends on the
agent variables, which hold the state and motivabbes defined in scenario. In each
simulation step, we recalculate all the agent neotrariables reflecting the actual
state in the environment and choose the motive with highest value as action
leading. The action related to the action leadimgive is then executed.

In MASON, the agent behavior is implemented andedaviast ep(Si nf5t at e
state) method. The parametesi nSt at e represents the simulation instance,
holding also the defined properties of the envirentand simulation.

The simplest behavior is that of the Stone agetanesagent is created when the
Civilian enters thestone picking area. Then it is just carried by the Civilian agent
along its path. Civilian and Soldier are anothezragypes implemented according to
scenario from section 2.

Agent behavior in MASON is implemented through slteep() method, which is
invoked at each simulation step for the environnaanivell as for the agents and their
internal components (fear, anger, etc.). The agentaccess the environmental state
via the SimState instance passed toshep() method. The agent can also invoke
the get Obj ect sWt hi nDi stance method onl nt2D or Conti nuos2D
environment properties to locate the appropriajeaib depending on its intentions.

VBS2 agents are represented as Finite State Au#ooraFinite State Machines.
Agents behavior can be implemented using an FSNbreddy scripting in a text
editor, through Application Scripting Interface tnally, by VBS2Fusion API.

Overall, we felt that both NetLogo and MASON hae theeded support for the
behavior modeling. In both cases, the behavior @mgintation had to be step-based,
which differed from VBS2 and other virtual realityols that were thread and event-
based. This difference may have an impact on thegiation and behavior
implementation.

3.4 Movement | mplementation

NetLogo offers a lot of built-in variables and cowrmmds, which make the
implementation of the agent movement easy andgsiifarward. One can define
location byset xy <x> <y> (e.g. its initial position in the environmenby set
headi ng towards <agent> to set the heading of civilian to nearest stone for
exampleor by f orward <di st ance> to move agent forward in the heading
direction by specified distancéAnother useful command that we used a lot is
di stance <agent >.

To the best of our knowledge, the movement algorittare not supported well in
MASON. All we could do in MASON was to set up a néwation for the agent in
each step. In NetLogo, movement is supported muatkeh because of its turtle
nature. So in MASON we had to implement the batp-svise movement towards
the target. The implementation of Flocking or Stegebehavior (movement) is also
not directly supported. However, Flocking is impkarted in one of the MASON
demos called Flockers. We will try to reuse it dasdt it. For flocking behavior in
NetLogo, the programmer simply defines the closkstance among the agents and
NetLogo steers the agents so that this distangeasanteed.

Agent movement in VBS2 is planned via the A-stayjodthm. VBS2 is able to
plan the optimal path also using the waypoints.

Overall, NetLogo definitely has a better suppont &ment movement (at least
heading towards is supported) than MASON. In MASOS&, few sample
implementations are available but not directly sarpgd. In addition NetLogo offers
built-in turtle commands for hill climbing and desaling into valleys according to a
variable value of patches around the turtle. Theedso a support for "cone of vision"
in NetLogo, which allows a turtle to set its viewp¢vision angle and distance) and
ask tor agents that fall in the cone.

3.5 Visualization

In NetLogo, vector shapes are used to visualizéeturVector shapes are built
from basic geometric shapes (squares, circles linad) rather than from a grid of
pixels. Vector shapes are fully scalable and rbtataNetLogo caches bitmap images
of vector shapes (magnified by a factor of 1, &rf{ 2) so as to speed up execution.

NetLogo can be invoked and controlled by anothegm@m running on the Java
Virtual Machine. It is possible to embed NetLogoduals in a larger application.
There is an API for this purpose, but it is constdeas experimental and is likely
going to change in the future releases of NetL&gben running NetLogo models by
API, it is possible to turn off the GUI.

In MASON, a very useful feature is the strict sepi@n of visualization and
simulation. In order to run the simulation with thisualization one has to create a
new class derived from th@Ul St at e class, which then instantiates tBienfSt at e
implementation. For visualization layers one ca@ Bsrtrayals, which usually match
the variables representing the environment. Omededine how their values will be
mapped to colors or how to draw the agents. We hHememented only 2D
visualization, but 3D is also possible and includeMASON demos.

VBS2 is used to show highly realistic 3D environtsehere is a problem with
smoothly visualizing atomic actions in special caseg. when a civilian wants to
throw a stone but the leading motive changes, staits turning back towards the
safety area in the middle of a throwing action.

Overall, both MASON and NetLogo have equally goagport for visualization,
but MASON supports 3D for a longer time. In MASOMultiple displays can be
used and models can be run fully independentlyisfalization. In both NetLogo
and MASON one can switch off the visualization. Baty in MASON the simulation
models are truly independent from the visualizatiwhich makes it much faster — an
important factor for multi-parametric studies (déteming).

3.6 Parameterization

NetLogo offers a tool called BehaviorSpace, whiah oun one model many times,
systematically varying the model's settings andmdiag the results of each model
run. BehaviorSpace lets the user to explore theeffotspace" of possible behaviors
and determine which combinations of settings cdhsebehaviors of interest. User
can parameterize a particular variable by spedfgrist of all its possible values, by
defining an initial value, final value and incremeor the variable can be randomly
varied within a specified range.

Since MASON is built in Java, parameterization ohuwation can be easily
implemented. Direct support for parameterizationsishulation is provided in the
form of a tutorial’.

Both systems support the parameterization needealufomulti-parametric studies
(data farming). With MASON it is probably easierachieve a massive run-time job-
level parallelism. On top of that, MASON also penfic well when running more
instances on a single machine with more CPU camed,has a strong separation of
the visualization and the behavior model.

3.7 Model check pointing

When running a model with NetLogo GUI, it is possilbto manually stop the
simulation and save (export) its whole world state a file. NetLogo automatically
saves all the values of all the variables, bothtdmiand user-defined, including all
the observer, turtle, and patch variables, the igwhe contents of the output area
(if it exists), the contents of any plots and tketes of the random number generator.
The resulting file can be then read back into Ngti@and simulation can continue
from the saved state. This export/import functidggails provided by the built-in
commandexport-world <fil e>andi nport-world <file>.

MASON too has a good support for the model chedktpw — storing simulation
at any time to a disk file. Later the model canrbdoaded and the simulation re-
started from the same point. We have tested thisife and it worked well.

17 http://Iwww.cs.gmu.edu/~eclab/projects/mason/exteséwebtutoriall/

VBS2 game can be saved at any time and there goldem in restarting it from
several checkpoints made during the game to testhative branches of the scenario.
Both NetLogo and MASON support the model check-fog but MASON also

claims cross-platform compatibility.

3.8 Analytical Tools

Results of the NetLogo simulation can be displaygetthe user in the form of a plot
or a monitor. The first is the traditional way ofsplaying data in two or three-
dimensional space. Monitor is another popular foonsisting of a number of frames,
each of which represents a concrete attributesifnalation and its current numerical
value. Users can export this data to a file in otderead and analyze it later with
other applications, e.g. a spreadsheet. We haed to visualize some state and
motive variables of a civilian agent in plots (&&arts on left side of Figure 1).

NetLogo Profiler extension helps measuring how yrtémes the procedures in the
model are called during a run, and how long eadhtalees. The profiler extension is
new and experimental and is not yet well testedisar friendly. NetLogo System
Dynamics Modeler is used to describe and underdtandthings in a model relate to
one another. Instead of modeling behavior of irdlial agents and use them as the
basic building block of a model, the populationsagénts is described as a whole by
differential equations.

MASON simulations can run directly as Java codehait visualization. When
running with visualization, simulations are conledl through the Mason Console
(Figure 1, right) that allows starting, pausing atopping. Users can load the stored
models and run them from specific checkpoints. Téey also record the simulation
as a movie or take a screenshot. It is possibdetalelays and choose one of multiple
displays. Multiple displays are used when we neeablve more than one view of the
simulation. Similarly as in NetLogo, the users dampect® all the public agent
variables (but setter and getter methods need impkmented). Their changes can
be displayed as a Chart (JFreeChart extensionjeamsed into a file.

VBS2 comes with the AAR (After Action Review) tookhich can be used for
replaying and analyzing the whole mission to findotal moments in the scenario.

Here, NetLogo was a traditional winner, but now M2$ also has a good support
for the analysis of variables evolving in time liygeaming or drawing charts.

3.9 Logging

NetLogo uses the Log4j package for logging. NetLdgbines eight loggers (Globals,
Greens, Code, Widgets, Buttons, Speed sliders|eBuitinks), which are configured
through a configuration file.

To the best of our knowledge, MASON does not sufptia logging functionality
directly. We have implemented it using log4j. Itleagent we have implemented the
logging method, which receives the text label (Uguwdescribing actions) as input and

18 http://www.cs.gmu.edu/~eclab/projects/mason/dotwial0/index.html

outputs all the information about the agent —adtsation, variable states (fear, anger),
motives and the text label. This provided us altleeded functionality for logging.
VBS2 has its own logging module, but there are aleeeral script commands,
which can be used for logging whatever else mightdgjuired.
NetLogo has a direct support for logging. In MASORNE can use the existing Java
libraries such as log4j to log the simulation data.

3.10 Perfor mance

Performance of MASON was evaluated in [7, 8] andLNgo in [7], where it
turned out that MASON was the fastest platform. Néee evaluated it by running
our exemplary scenario with varying numbers of agemd extending the physical
area so as to accommodate them properly. We achthieeby copying the same base
scenario area 10, 100 or 1000 times by placingnaaopy of the base area on top of
each other. We have then tested the performancaring the simulation 10 times
for 1000 steps. Since one base area accommodatewilléns and 5 soldiers, the
evaluated numbers of agents were (1) 10 Civilimrsus 5 Soldiers; (2) 100 Civilians
versus 50 Soldiers; (3) 1,000 Civilians versus S@ldiers; and, finally, (4) 10,000
Civilians versus 5,000 Soldiers. In the last cagehave run only 10 steps of the
simulation for MASON. This step was not succesafudll for NetLogo, because even
with 1GB of Java heap space, NetLogo did not sutaestarting with 15,000 agents.
Since NetLogo was much slower, we only run 10 sfep§,500 agents.

In this way the systems were evaluated for up t@0d® agents. This number did
not include the stones, which were created andaiest on demand. We have run the
evaluation on the machine with two Intel(r) Core(Ti¥ CPU 860 2.80 GHz
processors and 3GB RAM. The operating system waslbVis 7 (32-bit version).

Number of Agents 15 150 1500 15000
NetLogo 1step (ms) 0,48 27,60 18281,95
MASON 1 step (ms) 0,10 0,59 21,51 2474,30
MASON speed vs. NetLogo 4,8x 46,8 x 849,9 x

Table 1: Performance evaluation summary

MASON and NetLogo performance is shown in Tableéhe simulation step took
about 22 milliseconds for MASON and about 18 seediod NetLogo for the middle
option (No.3) with 1,500 agents. So MASON was alh8%0 times faster. MASON
speed is quite impressive and acceptable for n@&l-bperation with virtual reality
tools for about a thousand agents. NetLogo couldused well for a hundred of
agents. While evaluating the performance we havtlked off the logging for both
MASON and NetLogo. With logging to file, the penfleance of MASON was 2-3
times slower. With logging both to file and to colesthe execution was 9-10 times
slower. During the actual simulation the loggingheeded, but the execution time of
one step with 1,500 agents is still under 1/10 exfosd (about 66 milliseconds),
which is still acceptable. For 15,000 agents, omeukation step took about 2.5
seconds for MASON (for NetLogo it did not even §tawhich is not acceptable for
virtual reality trainings, but still acceptable f@off-line) Data Farming. All the

simulations were executed without GUI, but everhv@U! the time of the simulation
was still acceptable for 150 agents for both Neti@pd MASON. We did not
measure and evaluate the exact time requirementiseo§imulations with GUI. In
general, MASON is much faster than NetLogo. Addislly, we have tested the
MASON performance on a single machine with four MO® instances running in
parallel. Intel Core i7-720QM (4 cores) and 8GB RAMAchine was used. One run of
a single instance of MASON was 3.74 times fastenftthis parallel execution of four
instances, which is a very good result. We didpssform this test for NetLogo.

In our test of VBS2, we have used the FSM combineith scripting
implementations and the conclusion was that VBSZdcoun 100 civilians and 20
soldiers with no delays at all (just in the initzation of the scenario there were some
delays). We did not test VBS2Fusion, which suppodse 200 times faster than ASI.

3.11 Standards

In this section we discuss related standards ssi¢hL# or FIPA and their support
in the evaluated platforms.

FIPA standards$ are relevant mainly for mobile and intelligent@uamous agents
and are not so much related to agent based simmlatIPA covers agent
communication, management and transportation (fabil® agents). For agent based
simulation only agent communication can be relevénit in simulations this is
limited to a few concrete communication messageis isonot so crucial whether an
ABS supports FIPA or not. Neither NetLogo nor MAS®lpport FIPA standards.

DIS and HLAstandard3 are more relevant for ABS, especially if we waat t
integrate realistic civilian simulation with soldigolice virtual training as intended in
EUSAS project. VBS2 serious game supports both HIDd DIS. Anyhow, rather
than HLA or DIS, we plan to use the plug-in funotidity in VBS2 and CORB&
technology for real-time communication between A8l VBS2 in EUSAS project,
which would be easier to develop (e.g. no needéate a FOM - Federation Object
Model). However since MASON is Java based, HLA Dagaegration can be
supported by using poRTI¥oor Java port of CERH for example. NetLogo,
integration through HLA would be also possible bat so straightforward.

3.12 Development Environment
In multi-agent systems developers face problemk débugging the agents since

they run in separate threads. Both NetLogo and MRB@re step based, so models
can be easily debugged as any procedural or objisctted program.

19 http://ffipa.org/specifications/

22 http://www.sisostds.org/ProductsPublications/Stads/|IEEE Standards.aspx

23 http://www.corba.org/

24 http://www.porticoproject.org/

25 https://savannah.nongnu.org/projects/certi/

%6 In MASON, agent routine (step) is scheduled aseaent, but there is only one event
scheduled at one time.

NetLogo has its own development environment, whiffbrs a lot of usable tools
such as the source editor, interface builder onfagenitors. NetLogo environment
allows users to run models and inspect their ptmser Debugging can be done
mainly by executing one step of simulation and Weaitg how the agent variables
change and how the visualization of the simulatbanges. Developer can interact
with the model by Command center on-the-fly, wheis possible to execute custom
commands.

MASON is Java based library. Any Java IDE can bedus develop in MASON.
We have used Eclip%e There is also tutorial available on how to use 3ON with
Eclipse. Standard Java debugging procedures carsédx easily to develop, debug
and test MASON models.

Our experience is that simple well organized lilmgrsuch as MASON [9] are
easier for programmers familiar with Java than mooeplex ABS IDEs, such as
Repast Symphony [1].

4 Discussion and Conclusion

In this paper we have summarized literature sunayABS and evaluated two
candidates — MASON and NetLogo by implementing eany human behavior
scenario. Recently, there have emerged interestavg candidates, such as Repast
Symphony or Jané®with its JaSIM® extension, which we might evaluate along these
lines in the future.

Table 2 provides a summary of the evaluated featimrdASON and NetLogo.
Both are almost equal in many features. NetLogoeiter in the physical movement
support and some analytical tools. MASON is mudcteig supports strong separation
of visualization and behavior models, has a bettgport for 3D environment and is
based on Java, which makes it far easier to integvdah other systems.

Features NetLogo MASON

Language Logo, Java for simulation control Java

Enviroment 2D, 3D experimental 2D, 3D

GIS support Yes Yes

Movement Heading angle +step just set(x,y)

Stearing/Flocking Behaviour [Not directly Not directly

Visualization 2D, 2D as 3D 2D, 3D

run with no visualization possible but not strictly separated separated behaviour and visualization models
Parametrization possible possible

Model check-pointing Yes Yes, platform independent

Analytical Tools Charts, Streamning, variable bars, snapshot |Charts, Streamning, snapshot, video recording
Logging support using log4j not direct support but log4j can be used
Performance |good for tens of agents |good for thouslands of agents

Table 2: Evaluated features summary

NetLogo has proved its reputation as an ABS platfavhere the simulation
models can be implemented quickly and straightfodiya A bit problematic is the
development of complex models, which cannot becsired well — each source file is
limited to include only one external source fildeTintegration with the serious game

27 http://lwww.eclipse.org/
28 http://www.janus-project.org/
29 http://www.multiagent.fr/Jasim_Platform

component is difficult, because it would requireveleping a custom plug-in for
NetLogo.

Regarding MASON, we have appreciated its rapid ovpments over the past
few years, with new plug-ins and tools (such as Giport) continually being
created. Its performance is impressive — it carpsrpthousands of agents in one
simulation. It is Java-based, which helps in itednation with the external systems
(e.g. serious game component — VBS2). Similarlg, lttyging functionality can be
implemented through other Java-based componeris,asulog4j.

Overall, we were greatly impressed by the NetLog@mdeting support,
functionality and the overall system, which makieari extremely valuable tool for
educational purposes, and for scientific model bgraent and analysis. Had we
simply looked for a handy standalone agent-baseullation tool for a limited
number of agents, NetLogo easily could have beerclice. Regarding the specific
goals and requirements of the EUSAS project, howewe had to conclude that
MASON'’s speed, flexibility and extensibility wereome important and made it the
best-suited candidate for the job.

Acknowledgments. The paper was supported by EDA project A-0938-R0-G
EUSAS (European Urban Simulation for Asymmetric r&ges) and Slovak
Scientific Grant VEGA 2/0184/10.

References

1. Macal C., North M.: Tutorial on agent-based modgllend simulation, In Journal of
Simulation, Vol. 4, No. 3, 151-162, 2010

2. EUSAS Consortium, Technical report, D2.5 DeliveegabEvaluation of existing
simulation frameworks, 2010.

3. EUSAS Consortium, White Paper on Agent Modelling,néx to D3.2 Deliverable:
Documentation of the modelling requirements BehawvRatterns, 2010.

4. Bakshy, E., & Wilensky, U. Turtle Histories and Aliate Universes; Exploratory
Modeling with NetLogo and Mathematica. In M. J. NorC. M. Macal & D. L. Sallach
(Eds.), Proceedings of the Agent 2007 Conferenc€omplex Interaction and Social
Emergence (pp. 147-158).

5. Nigel Gilbert, Steven Bankes, Platforms and methfodsagent-based modelling, doi:
10.1073/pnas.072079499, PNAS May 14, 2002 vol.@%Buppl 3 7197-7198

6. Rob Allan, Survey of agent based modelling and satmh tools, 2010, Technical
Report, DL-TR-2010-007, Science and Technologylfasi Council, ISSN 1362-0207

7. S.F. Railsback, S.L. Lytinen and S.K. Jackson AgBated Simulation Platforms:
Review and Development Recommendations Simulatio® 2005) 609-23,
http://www.humboldt.edu/ecomodel/documents/ABMPlatfReview.pdf

8. Russell K. Standish. 2008. Going Stupid with EcolL8bnulation 84, 12 (December
2008), 611-618. DOI=10.1177/0037549708097146

9. Luke, S., Cioffi-Revilla, C., Panait, L., & SullivaiK. (2004). MASON: A new multi-
agent simulation toolkit. In Proceedings of the £08warmFest Workshop.

10. Caflamero, D. (1997). Modeling Motivations and Emuwticas a Basis for Intelligent
Behaviour. Proceedings of the First Internationamnfgsium on Autonomous Agents
(Agents '97), pp. 148-155, Marina del Rey, Februs®97, The ACM Press, New York

11.Ddrner, D (1999): Bauplan fir eine Seele. RowohltiagrReinbek bei Hamburg.

