
Ontology based Text Annotation – OnTeA
Michal Laclavik1, Martin Seleng1, Emil Gatial1, Zoltan Balogh1, Ladislav Hluchy1,

1Institute of Informatics, Slovak Academy of Sciences, Dubravska cesta 9,
Bratislava, 845 07, Slovakia

Abstract: In this paper we describe a solution for the semi-automatic ontology
based text annotation (OnTeA) tool. The tool analyzes a document or text using
regular expression patterns and detects equivalent semantics elements according to
the defined domain ontology.

1. Introduction

Automated annotation of the Web documents is a key challenge of the Semantic Web
effort. Web documents are structured but their structure is understandable only for humans,
which is the major problem of the Semantic Web.

Annotation solutions can be divided into manual and semi-automatic methods. This
different strategy depends on a use of the annotation. There is number of annotation tools
and approaches such as CREAM [6] or Magpie [7] which follow the idea to provide users
with useful visual tools for manual annotation, web page navigation, reading semantic tags
and browsing [9] or provide infrastructure and protocols for manual stamping documents
with semantic tags such as Annotea1, Rubby2 or RDF annotation3.

Semi-automatic solutions focus on creating semantic metadata for further computer
processing, using semantic data in knowledge management [8] or in Semantic
Organization4 applications (see chapter 4). Semi-automatic approaches are based on natural
language processing [2] [3], a document structure analysis [4] or learning requiring training
sets or supervision [5]. Moreover, other pattern-based semi-automatic solutions such as
PANKOW and C-PANKOW [1] exist, using also Google API for automatic annotation.
The algorithm seems to be slow when annotating a large number of documents needed in
knowledge management or Semantic Organization applications. There is no evaluation of
performance but description of the algorithm with frequent connections to Google API does
not seem to be fast enough.

Ontea works on text, in particular domain described by domain ontology and uses
regular expression patterns for semi-automatic semantic annotation. In Ontea we try to
detect ontology elements within the existing application/domain ontology model. It means
that by the Ontea annotation engine we want to achieve the following objectives:

• Detecting Meta data from Text
• Preparing improved structured data for later computer processing
• Structured data are based on application ontology model

2. Methodology and the Approach

The Ontea tool analyzes a document or text using regular expression patterns and detects
equivalent semantics elements according to the defined domain ontology. Several cross
application patterns are defined but in order to achieve good results, new patterns need to
be defined for each application. In addition, Ontea creates a new ontology individual of a

1 http://www.w3.org/2001/Annotea/
2 http://www.w3.org/TR/ruby/
3 http://ilrt.org/discovery/2001/04/annotations/
4 By “Semantic Organization” we understand applying semantic web ideas & technologies in organizations

defined class and assigns detected ontology elements/individuals as properties of the
defined ontology class. The domain ontology needs to incorporate special ontology
extension (Figure 1) used by Ontea. This extension contains one class Pattern with several
properties.

pattFullTime

pattern = Full[-]Time

hasInstance =http://nazou.fiit.stuba.sk/nazou/ontolog...

Pattern

io

pattAllTwo

pattern = ([A-Z][-A-Za-z0-9]+[]+[-A-Za-z0-9]+)

io

pattLocation

pattern = Location: ([a-zA-Z]+[]*[-A-Za-z0-9]*)

hasClass =http://nazou.fiit.stuba.sk/nazou/ontolog...

createInstance = true

io

pattAll

pattern = ([A-Z][-A-Za-z0-9]+)

io

Figure 1: Pattern ontology with several individuals from NAZOU project domain ontology

The Pattern class represents regular expression patterns which are used to annotate plain
text with ontology elements. The Pattern individual {pattern} is evaluated by a semantic
annotation algorithm. On Figure 1 we can see several simple patterns which can detect
ontology individuals by matching String properties of such individuals. The properties of
Pattern class are hasClass.Pattern, hasInstance.Pattern, pattern.Pattern, pattern.
createInstance. The instances of the Pattern class are used to define and identify relations
between a text/document and its semantic version according to the domain ontology, where
the pattern property contains the regular expression which describes textual representation
of the relevant ontology element to be detected. The examined text/document is processed
with the regular expression for every pattern. If property hasInstance is not empty, an
individual included in this property is added to a set of detected ontology elements.
Moreover, when the hasClass property exists in the Pattern, the query is constructed and
processed to find the individuals that match the condition:

• The individual is the class of hasClass
• a property of individual contains the matched word

When property createIndividual is set True and corresponding individual with found
keyword is not found in ontology metadata, such individual of hasClass type is created.
The underlying principle of the Ontea algorithm can be described by the following steps:

1. The text of a document is loaded.

2. The text is proceed by defined regular expressions and if they are found,
corresponding ontology individual according to rest of pattern properties is
added to a set of found ontology individuals.

3. If no individual was found for matched pattern and createInstance property
is set, a simple individual of the class type contained in the hasClass
property is created with only property rdf:label containing matched text.

4. Such process is repeated for all regular expressions and the result is a set
of found individuals.

5. An empty individual of the class representing proceed text is created and
all possible properties of such ontology class are detected from the class
definition.

6. The detected individual is compared with the property type and if the
property type is the same as the individual type (class), such individual is
assigned as this property.

7. Such comparison is done for all properties of a new individual corresponding
with the text/document as well as for all detected individuals.

The algorithm also uses inference in order enable assignment of a found individual
to the corresponding property also if the inferred type of a found individual is the same as
the property type. The weak point of the algorithm is that if the ontology definition
corresponding with the detected text contains several properties of the same type, in this
case detected individuals cannot be properly assigned. This problem can be overcome if
algorithm is used only on creation of individuals of different property types. Crucial steps
of the algorithms as well as inputs and outputs can be seen also on Figure 2.

3. Architecture and Technology

Architecture of the system contains
similar elements as the main annotation
algorithm described above.

Inputs are text resources (HTML,
email, plain text) which need to be annotated
as well as corresponding domain ontology
with defined patterns individuals (Figure 1).
An output is a new ontology individual,
which corresponds to the annotated text.
Properties of this individual are filled with
detected ontology individuals according to
defined patterns.

Ontea works with RDF/OWL
Ontologies5. It is implemented in Java using
Jena Semantic Web Library6 or Sesame
library7. In both implementation inference is
used to achieve better results.

Text

Set of Detected
individuals

Creating Individual

Individual with
properties

Reg. Exp.
Ontology

Ontology class

Inference

Domain
Ontology

Ontology Individual

Ontology annotation

Figure 2: Ontea Tool Architecture

4. Examples of Use

Ontea has been created in the NAZOU8 and K-Wf Grid9 projects. The semantic text
annotation is an important subtask in both projects. In K-Wf Grid, Ontea is used to translate
or associate text input from a user to domain ontology elements. This is used in two cases:

• When a user wants to define his/her problem by typing free text – Ontea detects
relevant ontology elements and creates a semantic version of the problem
understandable for further computer processing.

• The second case is using text notes for collaboration and knowledge sharing [11].
Notes are showed to the user in appropriate context, which is detected by Ontea.

A specific use of Ontea in the NAZOU project is described in next chapter. We provide
more detailed examples on the Job Offer Application domain because the success rate of
algorithm was measured on this problem domain.

4.1 Use of Ontea in Job Offer Application

The Ontea annotation was created as one of tools is the NAZOU project. It is used to create
ontology metadata of offer HTML documents. The ontology metadata are then processed
by other NAZOU tools as well as presented to the user [10]. The Pilot application is the Job
search application, where tools are used to find, download, categorize, annotate, search and
display job offers to job seekers. Main components of Job Offer ontology are: a job
category, a duty location, a position type, required skills or an offering company, which can
be then detected by the Ontea algorithm.
 On the right side on Figure 3 the individual of the Job Offer is created based on the
semantic annotation of a Job Offer document (left side of figure 3), using simple regular
expression patterns as showed on Figure 1 where main individuals can be detected by the
title property such as sillSQL or skillPHP individuals. In this example the job offer location
- New York and USA are identified by a regular expression „([A-Za-z]+)“ a „([-A-Za-z0-

5 http://www.w3.org/TR/owlfeatures/
6 http://jena.sf.net/
7 http://www.openrdf.org/
8 http://nazou.fiit.stuba.sk/
9 http://www.kwfgrid.net/

9]+ []+[-A-Za-z0-9]+)“, because individual locNY has the property title „New York“,
locUS has the property title „USA“.

Location

Town

isa

Country

isa

skillSQL

Skill

io

skillXML

io

skillPHP

io

JobType

jtPermanent

iohasCountry*

locNewYork

io

locUS

io

JobOffer

job_1_html

io

hasRequirements hasRequirements hasType

hasLocation

hasRequirementshasLocation

Figure 3: On left: Web Document; On the right: Job Offer Individual Created by Ontea

 Similarly, other ontology elements are detected. Detected ontology individuals are
then assigned as properties of job offer, thus ontology instance of job offer is created out of
its text representation in the NAZOU pilot application.

5. Success Rate of Ontea Algorithm

In this chapter we discuss the algorithm success rate. As reference test data, we used
500 job offers filled in a defined ontology manually according to 500 html documents
representing reference job offers. Ontea processed reference html documents using the
reference ontology resulting in new ontology metadata consisting of 500 job offers, which
were automatically compared with manually entered job offers ontology metadata. In this
test, Ontea used only simple regular expressions matching from 1 to 4 words starting with a
capital letter and Ontea did not create extra new property individuals.

Table 1. The comparison of results computed using the Ontea tool with reference data. The count row
represents the number of job properties assigned to a job offer in reference data. The Ontea row represents the
number of detected properties by the Ontea tool. The match row represents the number of same properties in
the reference and Ontea ontology metadata. The precision, recall and F1-measure rows represent the
performance of annotation.

Count 4 4 6 6 4 6 6 6 5 ... 6 6 4 4 5 4
Ontea 8 7 8 8 12 8 10 9 9 ... 7 7 6 6 7 6
Match 4 4 6 6 4 6 5 6 3 ... 5 5 3 3 4 4

Precision 0,5 0,57 0,75 0,75 0,33 0,75 0,5 0,67 0,33 … 0,71 0,71 0,5 0,5 0,57 0,67
Recall 1 1 1 1 1 1 0,83 1 0,6 … 0,83 0,83 0,75 0,75 0,8 1

F1-measure 0,67 0,73 0,86 0,86 0,5 0,86 0,62 0,8 0,43 … 0,77 0,77 0,6 0,6 0,67 0,8

To evaluate the performance of annotation, we used the standard recall, precision

and F1 measures (Table 1). Recall is defined as the ratio of correct positive predictions
made by the system and the total number of positive examples. Precision is defined as the
ratio of correct positive predictions made by the system and the total number of positive
predictions made by the system:

Match Relevant retrieved
Recall

Count All relevant
= = ,

Match Relevant retrieved
Precision

Ontea All retrieved
= = (1)

Recall and precision measures reflect the different aspects of annotation
performance. Usually, if one of the two measures is increasing, the other will decrease.
These measures were first used to measure IR (Information retrieval) system by Cleverdon
[11]. To obtain a better measure to describe performance, we use the F1 measure (first
introduced by van Rijsbergen [12]) which combines precision and recall measures, with
equal importance, into a single parameter for optimization. F1 measure is weighted average
of the precision and recall measures and is defined as follows:

1

2* *Precision Recall
F

Precision Recall
=

+
 (2)

We computed global estimates of performance using macro-averaging. Then the
performance of classification for all 500 job offers is:

0,63683025Precision = , 0,83163Recall = , 1 0,704550462F = (3)

As we can see, the F1 measure is high (over 70%), which means that Ontea tool
gives satisfactory results.

6. Conclusions and Future Work

The described solution is used and evaluated in the K-Wf Grid and the NAZOU
projects to detect relevant structured knowledge described by a domain specific ontology
model in unstructured text. The most similar annotation solution to Ontea is PANKOW [1].
While PANKOW is a more generic solution, we think that Ontea is a simpler, faster
(though the performance was not compared) solution with a better success rate, suitable for
knowledge management or Semantic Organization applications.

The achieved results are quite satisfactory since the Ontea tool works with an average
success over 70%, which is shown in the previous chapter. We believe that Ontea can be
successfully used in a text analysis as well as in providing improved services for automatic
text annotation, searching, categorizing, knowledge inference or reasoning.

In our future work we will strive to evaluate the algorithm on different application
domains where we will be changing the number and quality of regular expression patterns,
to find a good balance between precision and recall values.

This work is supported by projects NAZOU SPVV 1025/2004, K-Wf Grid EU RTD
IST FP6-511385, RAPORT APVT-51-024604, VEGA No. 2/6103/6.

References

[1] Cimiano P., Ladwig G., Staab S.: Gimme' the context: context-driven automatic semantic annotation
with c-pankow. In WWW '05, pages 332-341, NY, USA, 2005. ACM Press. ISBN 1-59593-046-9.

[2] Madche A., Staab S.: Ontology learning for the semantic web. IEEE Intelligent Syst., 16(2):72-79, 2001

[3] Charniak E., Berland M.: Finding parts in very large corpora. In Proceedings of the 37th Annual
Meeting of the ACL, pages 57-64, 1999.

[4] Glover E., Tsioutsiouliklis K., Lawrence S., Pennock D., Flake G.: Using web structure for classifying
and describing web pages. In Proc. of the 11th WWW Conference, pages 562-569. ACM Press, 2002.

[5] Reeve L., Hyoil Han: Survey of semantic annotation platforms. In SAC '05, pages 1634-1638, NY,
USA, 2005. ACM Press. ISBN 1-58113-964-0. doi: http://doi.acm.org/10.1145/1066677.1067049.

[6] Handschuh S., Staab S.: Authoring and annotation of web pages in cream. In WWW '02, pages 462-473,
NY, USA, 2002. ACM Press. ISBN 1-58113-449-5. doi: http://doi.acm.org/10.1145/511446.511506.

[7] Domingue J., Dzbor M.: Magpie: supporting browsing and navigation on the semantic web. In IUI '04,
pages 191-197, New York, NY, USA, 2004. ACM Press. ISBN 1-58113-815-6.

[8] Uren V. et al.: Semantic annotation for knowledge management: Requirements and a survey of the state
of the art. Journal of Web Semantics: Science, Services and Agents on the WWW, 4(1):14-28, 2005.

[9] Uren V. et al.: Browsing for information by highlighting automatically generated annotations: a user
study and evaluation. In K-CAP '05, pages 75-82, NY, USA, 2005b. ACM Press. ISBN 1-59593-163-5

[10] Návrat P., Bieliková M., Rozinajová V.: Methods and Tools for Acquiring and Presenting Information
and Knowledge in the Web. In: CompSysTech 2005, Varna, Bulgaria, June 2005. – pp. IIIB.7.1-IIIB.7.6.

[11] Laclavik M. et al.: Experience Management Based on Text Notes (EMBET); Innovation and the
Knowledge Economy; IOS Press, pp.261-268. ISSN 1574-1230, ISBN 1-58603-563-0.

[12] Cleverdon, C. W.; Mills, J. & Keen, E. M. (1966). Factors determining the performance of indexing
systems. Vol. 1-2. Cranfield, U.K.: College of Aeronautics.

[13] C. J. Van Rijsbergen, Information Retrieval, Butterworth-Heinemann, Newton, MA, 1979

