
Towards Large Scale Semantic Annotation Built on
MapReduce Architecture*

Michal Laclavík, Martin Šeleng, Ladislav Hluchý

Institute of Informatics, Slovak Academy of Sciences,
Dúbravská cesta 9, Bratislava, 845 07

laclavik.ui@savba.sk

Abstract. Automated annotation of the web documents is a key challenge of
the Semantic Web effort. Web documents are structured but their structure is
understandable only for a human that is the major problem of the Semantic
Web. Semantic Web can be exploited only if metadata understood by a
computer reach critical mass. Semantic metadata can be created manually,
using automated annotation or tagging tools. Automated semantic annotation
tools with the best results are built on different machine learning algorithms
requiring training sets. Another approach is to use pattern based semantic
annotation solutions built on NLP, information retrieval or information
extraction methods. Most of developed methods are tested and evaluated on
hundreds of documents which cannot prove its real usage on large scale data
such as web or email communication in enterprise or community environment.
In this paper we present how a pattern based annotation tool can benefit from
Google’s MapReduce architecture to process large amount of text data.

Keywords: semantic annotation, information extraction, metadata, MapReduce

1 Introduction

Automated annotation tools can provide semantic metadata for semantic web as well
as for knowledge management [4] or other enterprise applications [11].
 Pattern based automatic or semi-automatic solutions for semantic annotation or
tagging are usually based on NLP, information retrieval or information extraction
fields or minimally method algorithms common in the mentioned fields are applied.
Information Extraction - IE [1] is closed to semantic annotation or tagging by Named
Entity recognition – NE defined by series of MUC conferences.
Semi automatic annotation approaches can be divided into two groups with regards to
produced results [1]:

� identification of concept instances from the ontology in the text
� automatic population of ontologies with instances in the text

One of pattern based solutions for semi-automatic annotation is Ontea [2] [3] that uses
regular expression patterns to detect or create instances in ontology. In our previous
works [2] [3] we compared Ontea with other annotation methods and we conducted
experiments to demonstrate its success rate above 60% that is comparable to well
known annotation methods with easier applicability on concrete domain specific

* This work is supported by projects NAZOU SPVV 1025/2004, Commius FP7-213876,

SEMCO-WS APVV-0391-06, VEGA 2/7098/27.

application due to relatively simple method built on regular expressions. This is
another reason behind our decision to port Ontea into MapReduce architecture. We
believe other well known semantic annotation or IE solutions such as C-PANKOW,
KIM, GATE or different wrappers can be ported into MapReduce architecture. For
survey on semantic annotation please see [4] [5] [14].
 To our best knowledge the only semantic annotation solution which runs on
distributed architecture is SemTag [6]. It uses the Seeker [6] information retrieval
platform to support annotation tasks. SemTag annotates web pages using Stanford
TAP ontology [7]. However, SemTag is able to identify but not create new instances
in the ontology. Moreover, its results as well as TAP ontology are not available on the
web for a longer period of time.
 In our previous work we ported semantic annotation into Grid [3] with good
results but with no easy and direct implementation and results integration. Thus we
have focused on different parallel and distributed architectures.
Google’s MapReduce [8] architecture seems to be a good choice for several reasons:

� Information processing tasks can benefit from parallel and distributed
architecture with simply programming of Map and Reduce methods

� Architecture can process Terabytes of data on PC clusters with handling
failures

� Most of information retrieval and information extraction tasks can be ported
into MapReduce architecture, similar to pattern based annotation algorithms.
E.g. distributed grep using regular expressions, one of basic examples for
MapReduce, is similar to Ontea pattern approach using regular expressions
as well.

Fig. 1. MapReduce Architecture figure (source: Hadoop website).

On Figure 1 we can see main components of the MapReduce architecture: Map and
Reduce methods, data in distributed file system (DFS), inputs and outputs. Several
replicas of data are created on different nodes, when data are copied to DFS. Map
tasks are executed on the nodes where data are available. Results of Map tasks are key
value pairs which are reduced to results produced by Reduce method. All developer
need to do is implement Map and Reduce method and architecture will take care of

distribution, execution of tasks as well as fault tolerance. For more details on
MapReduce please see [8].
Two open source implementation of MapReduce are available:

� Hadoop [9], developed as Apache project with relation to Lucene and Nuch
information retrieval systems, implemented in Java. Hadoop is well tested on
many nodes. Yahoo! is currently running Hadoop on 10,000 nodes [15] in
production environment [16].

� Phoenix [10], developed at Stanford University, implemented in C++.
In this paper we discuss work in progress - porting of pattern based semantic
annotation solution Ontea into MapReduce architecture and its Hadoop
implementation. We provide preliminary results on 8 nodes Hadoop cluster on email
documents.

2 Ontea

The method used in Ontea [2] [3] is comparable particularly with methods such as
those used in GATE, C-PANKOW, KIM, or SemTag. It process texts or documents
of an application domain that is described by a domain ontological model and uses
regular expressions to identify relations between text and a semantic model. In
addition to having pattern implementation over regular expressions, created Ontea’s
architecture allows simply implementation of other methods based on patterns such as
wrapers, solutions using document structure, language patterns similar to GATE, C-
PANKOW and many others. Ontea [17] is being created as an Open source project
under Sourceforge.net.

2.1 Ontea Scenarios and Results Examples

Current Ontea implementation can be executed in 3 different scenarios:
� Ontea: searching relevant individuals in knowledge base (KB) according to

generic patterns
� Ontea creation: creating new individuals of objects found in text
� Ontea IR: Similar as previous with the feedback of information retrieval

methods and tools (e.g. Lucene) to get relevance computed above word
occurrence and decide weather to create instance or not.

Table 1. Examples of Instances and Patterns

Text Instance Patterns – regular expressions
1 Apple, Inc. Company: Apple Company: ([A-Za-z0-9]+)[,]+(Inc|Ltd)
2 Mountain View, CA 94043

Settlement: Mountain View Settlement: ([A-Z][a-z]+[]*[A-Za-z]*)[

]+[A-Z]{2}[]*[0-9]{5}
3 laclavik.ui@savba.sk Email: laclavik.ui@savba.sk Email:

[-_.a-z0-9]+@[-_.a-zA-Z0-9]+\.[a-z]{2,8}
4 Mr. Michal Laclavik Person: Michal Laclavik Person:

(Mr.|Mrs.|Dr.) ([A-Z][a-z]+ [A-Z][a-z]+)

New application scenarios can be created by combination of Result Transformers,
which is discussed in next chapter.

2.2 Ontea Architecture

The fundamental building elements of the tool are the following java interfaces and
extended and implemented objects:

� ontea.core.Pattern: interface for adaptation for different pattern search.
Currently implemented pattern search uses regular expressions
PatternRegExp.

� onetea.core.Result: a class representing annotation results by means object
instance of defined type/class. Its extensions are different types of instances
depending on implementation in ontology (Jena, Sesame) or as value and
type pairs.

� ontea.transform.ResultTransformer: interface that after implementation
contains different types of transformations among annotation results. Thus it
can transforms set of results and include in transformation various scenarios
of annotation such as relevance, result lemmatization, transformation of
found value/type pairs (Table 1) into OWL instances in sesame or Jena API
implementation. It is used to transform type value pairs into different type
value pairs represented e.g. by URI or lemmatized text value. It can be also
used to eliminate irrelevant annotation results.

Fig. 2. Basic classes of Ontea platform.

 On the Figure 2 you can see Result class, Pattern and ResultTransformer
interfaces. Such design allows extending Ontea for different patterns implementations
or for the integrations of existing pattern annotation solutions. Also it is possible to
implement various result transformations by implementing ResultTransformer, which
can be used also as inputs and outputs between Map tasks in MapReduce architecture.

2.3 Integration of Ontea with External Tools

Ontea tool can be easily integrated with external tools. Some tools can be integrated
by implementation of result transformers and other need to be integrated directly.

� MapReduce: Large scale semantic annotation using MapReduce Architecture
– is main topic of this article. Integration with Hadoop requires
implementation of Map and Reduce methods as described in next chapter.

� Language Identification: In order to use correct regexes or other patterns,
often we need to identify language of use. For this reason it is convenient to
integrate Ontea with language detection tool. We have tested Ontea with
Nalit [11]. Nalit is able to identify Slovak and English texts as well as others
if trained.

As already mentioned some integration can be done by implementing Result
transformers:

� Lemmatization: When concrete text is extracted as representation of an
individual, often we need to lemmatize found text to found or create correct
instance. For example capital of Slovakia can be identified in different
morphological forms: Bratislava, Bratislave, Bratislavu, or Bratislovou and
by lemmatization we can identify it always as individual Bratislava. We
have tested Ontea with Slovak lemmatizer Morphonary [12]. It is also
possible to use lemmatizers or stemmers from Snowball project [18], where
java code can be generated.

� Relevance Identification: When new instance is being created or found, it is
important to decide on instance relevance. This can be solved using
information retrieval methods and tools such as Lucene [19]. When
connecting with Lucene, Ontea asks for percentage of occurrence of matched
regular expression pattern to detected element represented by word on used
document set. Document set need to be indexed by Lucene. Example can be
Google, Inc. matched by pattern for company search: \\s+([-A-Za-z0-9][
]*[A-Za-z0-9]*),[]*Inc[.\\s]+”, where relevance is computed as “Google,
Inc.” occurrence divided by “Google” occurrence. Use of Lucene is related
to Ontea IR scenario and LuceneRelevance implementation of
ResultTransformer interface. Similarly, other relevance algorithms such as
cosine measure can be implemented. This was used for example in SemTag
[6].

� OWL Instance Transformation: Sesame, Jena: Transformation of found key
– value pairs into RDFS or OWL instances in Sesame or Jena API. With this
integration, Ontea is able to find existing instances in knowledge base if
existing and create new once if no instance found in DB. Ontea also use
inference to found appropriate instance. For example if Ontea process
sentence “Slovakia is in Europe.” using pattern for location detection
(in|near) +(\\p{Lu}\\p{L}+) following type value pair is detected Location:
Europe. If we have Location ontology with Subclasses as Continents,
Settlements, Countries or Cities and Europe is already present as instance of
continent, Ontea can detect existing Europe instance in knowledge base
using inference.

3 Ontea Ported into Hadoop

For porting Ontea or any semantic annotation solution it is important to understand
results of annotations as well as how they can correspond to key/value pairs - outputs
of Map and Reduce methods to be implemented in MapReduce architecture. In table 1
we show a simple example of Ontea possible annotation results such as settlements,
company names, persons or email addresses. Used regular expressions are simplified
to be more readable and understandable.
In the Map method, input is a text line which is processed by Ontea’s regex patterns
and outputs are key value pairs:

� Key: string starting with detected instance type and continue with instance
value similar to instance row in table 1. This can be extended to return also
instance properties e.g. address, phone or email as properties of company.

� Value: File name with detection of instance. It can be extended with position
in file e.g. line number and character line position if needed.

Basic building blocks of Ontea are the following java classes and interfaces described
earlier, which can be extended. Here we describe them in scope of MapReduce
architecture:
� ontea.core.Pattern: interface for adaptation of pattern based searching in text.

Main Pattern method Pattern.annotate() runs inside of Map method in
MapReduce implementation.

� onetea.core.Result: a class which represents the result of annotation – an
ontology instance. It is based on the type and value pairs as in table 1, instance
column. Ontology results extension contains also URI of ontology individual
created or found in ontology. Results are transformed into text keys as output of
Map method in MapReduce implementation.

� ontea.transform.ResultTransformer: interface which transform results of
annotation. Transformers are used in Map or Reduce methods in MapReduce
implementation to transform individuals into OWL file or eliminate some results
using Ontea IR scenario.

3.1 Ontea running on Hadoop MapReduce cluster

We wrapped up Ontea functionality into Hadoop MapReduce library. We tested it on
Enron email corpus [20] containing of 88MB of data and our personal email
containing of 770MB of data. We run same annotation patterns on both email data
sets, on single machine as well as 8 node Hadoop cluster. We have used Intel(R)
Core(TM)2 CPU 2.40GHz with 2GB RAM hardware on all machines.
 As you can see from Table 2, the performance increased 12 times on 16 CPUs in
case of large data set. In case of smaller data set it was only twice faster then on single
machine and MapReduce overhead is much more visible. In the table 2 we present
only 2 concrete runs on 2 different datasets, but in reality we have executed several
runs on these datasets and computational time was very similar so we can conclude
that times presented in table 2 are very close to average.

Table 2. Performance and execution results

Description Enron corpus (88MB) Personal email (770MB)

Time on single machine 2min, 5sec 3hours, 37mins, 4sec
Time on 8 nodes hadoop
cluster 1min, 6sec 18mins, 4sec

Performance increased 1.9 times 12 times

Launched map tasks 45 187

Launched reduce tasks 1 1

Data-local map tasks 44 186

Map input records 2,205,910 10,656,904

Map output records 23,571 37,571

Map input bytes 88,171,505 770,924,437

Map output bytes 1,257,795 1,959,363

Combine input records 23,571 37,571

Combine output records 10,214 3,511

Reduce input groups 7,445 861

Reduce input records 10,214 3,511

Reduce output records 7,445 861

 In our tests we run only one Map method implementation and one Reduce method
implementation. We would like to implement also passing Map results to another
Map method as an input and thus fully exploit potential of ResultTransformers in
Ontea architecture. However, we believe that this new tests does not change – decrees
performance of semantic annotation on MapReduce architecture.

4 Conclusion and Future work

 In this paper we discussed briefly how pattern based semantic annotation could
benefit from MapReduce architecture to process a large collection of data. We
demonstrated how Ontea pattern solution could be ported to implement basic Map
and Reduce methods. Furthermore we provided preliminary results on 8 node Hadoop
cluster. As we can see from preliminary results, performance on large datasets is very
reasonable on Hadoop. MapReduce architecture is scalable to thousands machines.
We believe semantic annotation can be successful only if able to annotate or tag large
collections of documents.
 In our future work we would like to test MapReduce also on several Map tasks in
a row and publish implemented code under Ontea.sourceforrge.net project. We also
want to use MapReduce architecture to solve concrete application domains such as
geographical location identification of web pages and large scale email processing to
improve automated email management and semantic searching.

References
1. Cunningham, H. (2005). Information Extraction, Automatic. Encyclopedia of Language

and Linguistics, 2nd Edition
2. Laclavik M., Seleng M., Gatial E., Balogh Z., Hluchy L.: Ontology based Text Annotation

OnTeA; Information Modelling and Knowledge Bases XVIII. IOS Press, Frontiers in AI,
Vol. 154, ISBN 978-1-58603-710-9, ISSN 0922-6389, (2007) 311–315

3. Laclavik M., Ciglan M., Seleng M., Hluchy L.: Ontea: Empowering Automatic Semantic
Annotation in Grid; to appear in proceedings of PPAM 07, Springer-Verlag

4. Uren V., Cimiano P.,Iria J., Handschuh S., Vargas-Vera M., Motta E.,Ciravegna F.:
Semantic annotation for knowledge management: Requirements and a survey of the state
of the art. Journal of Web Semantics, 4(1) (2005) 14–28

5. Reeve L., Hyoil Han: Survey of semantic annotation platforms. In SAC’05: Proceedings
of the 2005 ACM symposium on Applied computing, pages 1634-1638, New York, NY,
USA, ACM Press. ISBN 1-58113-964-0. (2005)

6. Dill S., Eiron N., et al.: A Case for Automated Large-Scale Semantic Annotation; Journal
of Web Semantics (2003)

7. Guha R. and McCool R. Tap: Towards a web of data. http://tap.stanford.edu/.
8. Dean J., Ghemawat S.: MapReduce: Simplified Data Processing on Large Clusters,

Google, Inc. OSDI’04, San Francisco, CA (2004)
9. Lucene-hadoop Wiki, HadoopMapReduce, http://wiki.apache.org/lucene-

hadoop/HadoopMapReduce (2008)
10. The Phoenix system for MapReduce programming.

http://csl.stanford. edu/~christos/sw/phoenix/. (2008)
11. Laclavik M., Seleng M., Hluchy L.: ACoMA: Network Enterprise Interoperability and

Collaboration using E-mail Communication; Expanding the Knowledge Economy: Issues,
Applications, Case Studies ,IOS Press, 2007 Amsterdam ISBN 978-1-58603-801-4

12. Vojtek P., Bieliková M. (2007), Comparing Natural Language Identification Methods
based on Markov Processes. In: Slovko - International Seminar on Computer Treatment of
Slavic and East European Languages, Bratislava

13. Krajči S., Novotný R.: Lemmatization of Slovak words by a tool Morphonary, In TAOPIK
(2), Vydavateľstvo STU, 2007, ISBN 978-80-227-2716-7, pp. 115-118

14. Corcho, O.: Ontology-based document annotation: trends and open research problems;
International Journal of Metadata, Semantics and Ontologies 1(1):47-57. 2006

15. Open Source Distributed Computing: Yahoo's Hadoop Support, Developer Network blog,
http://developer.yahoo.net/blog/archives/2007/07/yahoo-hadoop.html, (2007)

16. Yahoo! Launches World's Largest Hadoop Production Application, Yahoo! Developer
Network, http://developer.yahoo.com/blogs/hadoop/2008/02/yahoo-worlds-largest-
production-hadoop.html, (2008)

17. Ontea: Pattern based Semantic Annotation Platform, SourceForge.net project,
http://ontea.sourceforge.net/, (2008)

18. Snowball Project, http://snowball.tartarus.org/, (2008)
19. Apache Lucene project, http://lucene.apache.org/, (2008)
20. Klimt B., Yang Y.: Introducing the Enron Corpus, CEAS, 2004,

http://www.ceas.cc/papers-2004/168.pdf, http://www.cs.cmu.edu/~enron/, (2008)

